ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.07541
  4. Cited By
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD

Aspects of scaling and scalability for flow-based sampling of lattice QCD

14 November 2022
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
D. Hackett
A. G. Matthews
S. Racanière
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
ArXiv (abs)PDFHTML

Papers citing "Aspects of scaling and scalability for flow-based sampling of lattice QCD"

49 / 49 papers shown
Title
Flow-Based Sampling for Entanglement Entropy and the Machine Learning of Defects
Flow-Based Sampling for Entanglement Entropy and the Machine Learning of Defects
Andrea Bulgarelli
E. Cellini
K. Jansen
Stefan Kühn
A. Nada
Shinichi Nakajima
K. Nicoli
M. Panero
69
6
0
18 Oct 2024
Bayesian RG Flow in Neural Network Field Theories
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
132
2
0
27 May 2024
Gauge-equivariant flow models for sampling in lattice field theories
  with pseudofermions
Gauge-equivariant flow models for sampling in lattice field theories with pseudofermions
Ryan Abbott
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
...
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
B. Tian
Julian M. Urban
82
43
0
18 Jul 2022
Learning Lattice Quantum Field Theories with Equivariant Continuous
  Flows
Learning Lattice Quantum Field Theories with Equivariant Continuous Flows
Mathis Gerdes
P. D. Haan
Corrado Rainone
Roberto Bondesan
Miranda C. N. Cheng
AI4CE
77
41
0
01 Jul 2022
Flow-based density of states for complex actions
Flow-based density of states for complex actions
J. Pawlowski
Julian M. Urban
58
10
0
02 Mar 2022
Flow-based sampling in the lattice Schwinger model at criticality
Flow-based sampling in the lattice Schwinger model at criticality
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
46
35
0
23 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
115
53
0
31 Jan 2022
Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A
  Large-Scale Generative Language Model
Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model
Shaden Smith
M. Patwary
Brandon Norick
P. LeGresley
Samyam Rajbhandari
...
Mohammad Shoeybi
Yuxiong He
Michael Houston
Saurabh Tiwary
Bryan Catanzaro
MoE
163
743
0
28 Jan 2022
Stochastic normalizing flows as non-equilibrium transformations
Stochastic normalizing flows as non-equilibrium transformations
M. Caselle
E. Cellini
A. Nada
M. Panero
84
35
0
21 Jan 2022
LeapfrogLayers: A Trainable Framework for Effective Topological Sampling
LeapfrogLayers: A Trainable Framework for Effective Topological Sampling
Sam Foreman
Xiao-Yong Jin
James C. Osborn
46
9
0
02 Dec 2021
Scaling Up Machine Learning For Quantum Field Theory with Equivariant
  Continuous Flows
Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows
P. D. Haan
Corrado Rainone
Miranda C. N. Cheng
Roberto Bondesan
AI4CE
76
35
0
06 Oct 2021
Flow-based sampling for fermionic lattice field theories
Flow-based sampling for fermionic lattice field theories
M. S. Albergo
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
Julian M. Urban
D. Boyda
Kyle Cranmer
D. Hackett
P. Shanahan
AI4CE
79
43
0
10 Jun 2021
Unbiased Monte Carlo Cluster Updates with Autoregressive Neural Networks
Unbiased Monte Carlo Cluster Updates with Autoregressive Neural Networks
Dian Wu
R. Rossi
Giuseppe Carleo
88
29
0
12 May 2021
Deep Learning Hamiltonian Monte Carlo
Deep Learning Hamiltonian Monte Carlo
Sam Foreman
Xiao-Yong Jin
James C. Osborn
45
16
0
07 May 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
91
78
0
15 Feb 2021
Introduction to Normalizing Flows for Lattice Field Theory
Introduction to Normalizing Flows for Lattice Field Theory
M. S. Albergo
D. Boyda
D. Hackett
G. Kanwar
Kyle Cranmer
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
79
58
0
20 Jan 2021
Convex Potential Flows: Universal Probability Distributions with Optimal
  Transport and Convex Optimization
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
190
98
0
10 Dec 2020
Sampling using $SU(N)$ gauge equivariant flows
Sampling using SU(N)SU(N)SU(N) gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
84
129
0
12 Aug 2020
Estimation of Thermodynamic Observables in Lattice Field Theories with
  Deep Generative Models
Estimation of Thermodynamic Observables in Lattice Field Theories with Deep Generative Models
K. Nicoli
Christopher J. Anders
L. Funcke
T. Hartung
K. Jansen
Pan Kessel
Shinichi Nakajima
Paolo Stornati
AI4CE
53
3
0
14 Jul 2020
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows
Didrik Nielsen
P. Jaini
Emiel Hoogeboom
Ole Winther
Max Welling
TPMBDLDRL
78
92
0
06 Jul 2020
Array Programming with NumPy
Array Programming with NumPy
Charles R. Harris
K. Millman
S. Walt
R. Gommers
Pauli Virtanen
...
Tyler Reddy
Warren Weckesser
Hameer Abbasi
C. Gohlke
T. Oliphant
161
15,066
0
18 Jun 2020
Language Models are Few-Shot Learners
Language Models are Few-Shot Learners
Tom B. Brown
Benjamin Mann
Nick Ryder
Melanie Subbiah
Jared Kaplan
...
Christopher Berner
Sam McCandlish
Alec Radford
Ilya Sutskever
Dario Amodei
BDL
911
42,520
0
28 May 2020
Extending machine learning classification capabilities with histogram
  reweighting
Extending machine learning classification capabilities with histogram reweighting
Dimitrios Bachtis
Gert Aarts
B. Lucini
50
21
0
29 Apr 2020
Equivariant flow-based sampling for lattice gauge theory
Equivariant flow-based sampling for lattice gauge theory
G. Kanwar
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
66
176
0
13 Mar 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
146
185
0
16 Feb 2020
Normalizing Flows on Tori and Spheres
Normalizing Flows on Tori and Spheres
Danilo Jimenez Rezende
George Papamakarios
S. Racanière
M. S. Albergo
G. Kanwar
P. Shanahan
Kyle Cranmer
TPM
91
157
0
06 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
215
1,718
0
05 Dec 2019
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
194
778
0
10 Jun 2019
Flow-based generative models for Markov chain Monte Carlo in lattice
  field theory
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
105
219
0
26 Apr 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
73
108
0
09 Mar 2019
Solving Statistical Mechanics Using Variational Autoregressive Networks
Solving Statistical Mechanics Using Variational Autoregressive Networks
Dian Wu
Lei Wang
Pan Zhang
114
186
0
27 Sep 2018
Monge-Ampère Flow for Generative Modeling
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
92
63
0
26 Sep 2018
Interactive Supercomputing on 40,000 Cores for Machine Learning and Data
  Analysis
Interactive Supercomputing on 40,000 Cores for Machine Learning and Data Analysis
Albert Reuther
J. Kepner
Chansup Byun
S. Samsi
William Arcand
...
J. Mullen
Andrew Prout
Antonio Rosa
Charles Yee
Peter Michaleas
LRMReLM
397
283
0
20 Jul 2018
Neural Ordinary Differential Equations
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
463
5,176
0
19 Jun 2018
Horovod: fast and easy distributed deep learning in TensorFlow
Horovod: fast and easy distributed deep learning in TensorFlow
Alexander Sergeev
Mike Del Balso
102
1,222
0
15 Feb 2018
Neural Network Renormalization Group
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDLDRL
97
125
0
08 Feb 2018
Towards reduction of autocorrelation in HMC by machine learning
Towards reduction of autocorrelation in HMC by machine learning
A. Tanaka
A. Tomiya
51
27
0
11 Dec 2017
Generalizing Hamiltonian Monte Carlo with Neural Networks
Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
79
130
0
25 Nov 2017
Don't Decay the Learning Rate, Increase the Batch Size
Don't Decay the Learning Rate, Increase the Batch Size
Samuel L. Smith
Pieter-Jan Kindermans
Chris Ying
Quoc V. Le
ODL
127
996
0
01 Nov 2017
A-NICE-MC: Adversarial Training for MCMC
A-NICE-MC: Adversarial Training for MCMC
Jiaming Song
Shengjia Zhao
Stefano Ermon
BDLOOD
113
110
0
23 Jun 2017
Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines
Accelerate Monte Carlo Simulations with Restricted Boltzmann Machines
Li Huang
Lei Wang
AI4CE
64
199
0
10 Oct 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,723
0
26 May 2016
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model
  Evaluation
A Kernelized Stein Discrepancy for Goodness-of-fit Tests and Model Evaluation
Qiang Liu
Jason D. Lee
Michael I. Jordan
116
486
0
10 Feb 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
324
4,198
0
21 May 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
358
18,661
0
06 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.2K
150,433
0
22 Dec 2014
Transport map accelerated Markov chain Monte Carlo
Transport map accelerated Markov chain Monte Carlo
M. Parno
Youssef Marzouk
OT
138
161
0
17 Dec 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRLBDL
146
2,269
0
30 Oct 2014
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
165
6,635
0
22 Dec 2012
1