Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2211.00454
Cited By
v1
v2 (latest)
PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics
1 November 2022
A. Bogatskiy
Timothy Hoffman
David W. Miller
Jan T. Offermann
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics"
18 / 18 papers shown
Title
Lorentz Local Canonicalization: How to Make Any Network Lorentz-Equivariant
Jonas Spinner
Luigi Favaro
Peter Lippmann
Sebastian Pitz
Gerrit Gerhartz
Tilman Plehn
Fred Hamprecht
AI4CE
32
1
0
26 May 2025
Learning symmetries in datasets
Veronica Sanz
DRL
55
0
0
07 Apr 2025
A Lorentz-Equivariant Transformer for All of the LHC
Johann Brehmer
Victor Bresó
P. D. Haan
Tilman Plehn
Huilin Qu
Jonas Spinner
Jesse Thaler
BDL
106
18
0
01 Nov 2024
Does equivariance matter at scale?
Johann Brehmer
S. Behrends
P. D. Haan
Taco S. Cohen
108
15
0
30 Oct 2024
Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics
Jonas Spinner
Victor Bresó
P. D. Haan
Tilman Plehn
Jesse Thaler
Johann Brehmer
AI4CE
96
19
0
23 May 2024
Moments of Clarity: Streamlining Latent Spaces in Machine Learning using Moment Pooling
Rikab Gambhir
Athis Osathapan
Jesse Thaler
84
3
0
13 Mar 2024
Clifford-Steerable Convolutional Neural Networks
Maksim Zhdanov
David Ruhe
Maurice Weiler
Ana Lucic
Johannes Brandstetter
Patrick Forré
126
15
0
22 Feb 2024
Ultrafast jet classification on FPGAs for the HL-LHC
Patrick Odagiu
Zhiqiang Que
Javier Mauricio Duarte
J. Haller
Gregor Kasieczka
...
Arpita Seksaria
S. Summers
A. Sznajder
A. Tapper
Thea Klæboe Årrestad
65
3
0
02 Feb 2024
Z
2
×
Z
2
\mathbb{Z}_2\times \mathbb{Z}_2
Z
2
×
Z
2
Equivariant Quantum Neural Networks: Benchmarking against Classical Neural Networks
Zhongtian Dong
Marçal Comajoan Cara
Gopal Ramesh Dahale
Roy T. Forestano
S. Gleyzer
...
Kyoungchul Kong
Tom Magorsch
Konstantin T. Matchev
Katia Matcheva
Eyup B. Unlu
92
5
0
30 Nov 2023
Equivariance Is Not All You Need: Characterizing the Utility of Equivariant Graph Neural Networks for Particle Physics Tasks
S. Thais
D. Murnane
AI4CE
77
5
0
06 Nov 2023
19 Parameters Is All You Need: Tiny Neural Networks for Particle Physics
A. Bogatskiy
Timothy Hoffman
Jan T. Offermann
93
3
0
24 Oct 2023
A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
Ilyes Batatia
51
0
0
16 Oct 2023
PCN: A Deep Learning Approach to Jet Tagging Utilizing Novel Graph Construction Methods and Chebyshev Graph Convolutions
Yash Semlani
Mihir Relan
Krithik Ramesh
GNN
103
3
0
12 Sep 2023
Reconstruction of Unstable Heavy Particles Using Deep Symmetry-Preserving Attention Networks
M. Fenton
Alexander Shmakov
H. Okawa
Yuji Li
Ko-Yang Hsiao
Shih-Chieh Hsu
D. Whiteson
Pierre Baldi
81
7
0
05 Sep 2023
Rotation-Invariant Random Features Provide a Strong Baseline for Machine Learning on 3D Point Clouds
O. Melia
Eric Jonas
Rebecca Willett
OOD
3DPC
75
3
0
27 Jul 2023
Anomalies, Representations, and Self-Supervision
B. Dillon
Luigi Favaro
Friedrich Feiden
Tanmoy Modak
Tilman Plehn
70
10
0
11 Jan 2023
Feature Selection with Distance Correlation
Ranit Das
Gregor Kasieczka
David Shih
68
14
0
30 Nov 2022
A Detailed Study of Interpretability of Deep Neural Network based Top Taggers
Ayush Khot
Mark S. Neubauer
Avik Roy
AAML
114
18
0
09 Oct 2022
1