ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.14593
  4. Cited By
Scaling Laws Beyond Backpropagation

Scaling Laws Beyond Backpropagation

26 October 2022
Matthew J. Filipovich
Alessandro Cappelli
Daniel Hesslow
Julien Launay
ArXivPDFHTML

Papers citing "Scaling Laws Beyond Backpropagation"

21 / 21 papers shown
Title
What Language Model to Train if You Have One Million GPU Hours?
What Language Model to Train if You Have One Million GPU Hours?
Teven Le Scao
Thomas Wang
Daniel Hesslow
Lucile Saulnier
Stas Bekman
...
Lintang Sutawika
Jaesung Tae
Zheng-Xin Yong
Julien Launay
Iz Beltagy
MoE
AI4CE
261
107
0
27 Oct 2022
Revisiting Neural Scaling Laws in Language and Vision
Revisiting Neural Scaling Laws in Language and Vision
Ibrahim Alabdulmohsin
Behnam Neyshabur
Xiaohua Zhai
192
109
0
13 Sep 2022
Beyond neural scaling laws: beating power law scaling via data pruning
Beyond neural scaling laws: beating power law scaling via data pruning
Ben Sorscher
Robert Geirhos
Shashank Shekhar
Surya Ganguli
Ari S. Morcos
85
439
0
29 Jun 2022
Self-Supervised Pretraining for Differentially Private Learning
Self-Supervised Pretraining for Differentially Private Learning
Arash Asadian
Evan Weidner
Lei Jiang
PICV
47
3
0
14 Jun 2022
What Language Model Architecture and Pretraining Objective Work Best for
  Zero-Shot Generalization?
What Language Model Architecture and Pretraining Objective Work Best for Zero-Shot Generalization?
Thomas Wang
Adam Roberts
Daniel Hesslow
Teven Le Scao
Hyung Won Chung
Iz Beltagy
Julien Launay
Colin Raffel
83
173
0
12 Apr 2022
PaLM: Scaling Language Modeling with Pathways
PaLM: Scaling Language Modeling with Pathways
Aakanksha Chowdhery
Sharan Narang
Jacob Devlin
Maarten Bosma
Gaurav Mishra
...
Kathy Meier-Hellstern
Douglas Eck
J. Dean
Slav Petrov
Noah Fiedel
PILM
LRM
441
6,222
0
05 Apr 2022
Training Compute-Optimal Large Language Models
Training Compute-Optimal Large Language Models
Jordan Hoffmann
Sebastian Borgeaud
A. Mensch
Elena Buchatskaya
Trevor Cai
...
Karen Simonyan
Erich Elsen
Jack W. Rae
Oriol Vinyals
Laurent Sifre
AI4TS
185
1,944
0
29 Mar 2022
Silicon Photonic Architecture for Training Deep Neural Networks with
  Direct Feedback Alignment
Silicon Photonic Architecture for Training Deep Neural Networks with Direct Feedback Alignment
M. Filipovich
Zhimu Guo
M. Al-Qadasi
Bicky A. Marquez
Hugh Morison
V. Sorger
Paul R. Prucnal
S. Shekhar
B. Shastri
43
54
0
12 Nov 2021
Scaling Laws for Neural Machine Translation
Scaling Laws for Neural Machine Translation
Behrooz Ghorbani
Orhan Firat
Markus Freitag
Ankur Bapna
M. Krikun
Xavier Garcia
Ciprian Chelba
Colin Cherry
63
101
0
16 Sep 2021
Do Transformer Modifications Transfer Across Implementations and
  Applications?
Do Transformer Modifications Transfer Across Implementations and Applications?
Sharan Narang
Hyung Won Chung
Yi Tay
W. Fedus
Thibault Févry
...
Wei Li
Nan Ding
Jake Marcus
Adam Roberts
Colin Raffel
72
127
0
23 Feb 2021
Adversarial Robustness by Design through Analog Computing and Synthetic
  Gradients
Adversarial Robustness by Design through Analog Computing and Synthetic Gradients
Alessandro Cappelli
Ruben Ohana
Julien Launay
Laurent Meunier
Iacopo Poli
Florent Krzakala
AAML
109
13
0
06 Jan 2021
Hardware Beyond Backpropagation: a Photonic Co-Processor for Direct
  Feedback Alignment
Hardware Beyond Backpropagation: a Photonic Co-Processor for Direct Feedback Alignment
Julien Launay
Iacopo Poli
Kilian Muller
Gustave Pariente
I. Carron
L. Daudet
Florent Krzakala
S. Gigan
MoE
43
18
0
11 Dec 2020
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and
  Architectures
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures
Julien Launay
Iacopo Poli
Franccois Boniface
Florent Krzakala
68
64
0
23 Jun 2020
Light-in-the-loop: using a photonics co-processor for scalable training
  of neural networks
Light-in-the-loop: using a photonics co-processor for scalable training of neural networks
Julien Launay
Iacopo Poli
Kilian Muller
I. Carron
L. Daudet
Florent Krzakala
S. Gigan
39
6
0
02 Jun 2020
Scaling Laws for Neural Language Models
Scaling Laws for Neural Language Models
Jared Kaplan
Sam McCandlish
T. Henighan
Tom B. Brown
B. Chess
R. Child
Scott Gray
Alec Radford
Jeff Wu
Dario Amodei
555
4,797
0
23 Jan 2020
CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data
CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data
Guillaume Wenzek
Marie-Anne Lachaux
Alexis Conneau
Vishrav Chaudhary
Francisco Guzmán
Armand Joulin
Edouard Grave
81
654
0
01 Nov 2019
Principled Training of Neural Networks with Direct Feedback Alignment
Principled Training of Neural Networks with Direct Feedback Alignment
Julien Launay
Iacopo Poli
Florent Krzakala
43
35
0
11 Jun 2019
Training Neural Networks with Local Error Signals
Training Neural Networks with Local Error Signals
Arild Nøkland
L. Eidnes
73
227
0
20 Jan 2019
Assessing the Scalability of Biologically-Motivated Deep Learning
  Algorithms and Architectures
Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures
Sergey Bartunov
Adam Santoro
Blake A. Richards
Luke Marris
Geoffrey E. Hinton
Timothy Lillicrap
82
244
0
12 Jul 2018
Deep Learning Scaling is Predictable, Empirically
Deep Learning Scaling is Predictable, Empirically
Joel Hestness
Sharan Narang
Newsha Ardalani
G. Diamos
Heewoo Jun
Hassan Kianinejad
Md. Mostofa Ali Patwary
Yang Yang
Yanqi Zhou
87
739
0
01 Dec 2017
Decoupled Neural Interfaces using Synthetic Gradients
Decoupled Neural Interfaces using Synthetic Gradients
Max Jaderberg
Wojciech M. Czarnecki
Simon Osindero
Oriol Vinyals
Alex Graves
David Silver
Koray Kavukcuoglu
75
356
0
18 Aug 2016
1