ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.00359
11
638

CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data

1 November 2019
Guillaume Wenzek
Marie-Anne Lachaux
Alexis Conneau
Vishrav Chaudhary
Francisco Guzmán
Armand Joulin
Edouard Grave
ArXivPDFHTML
Abstract

Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.

View on arXiv
Comments on this paper