ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07125
25
3

Self-Supervised Pretraining for Differentially Private Learning

14 June 2022
Arash Asadian
Evan Weidner
Lei Jiang
    PICV
ArXivPDFHTML
Abstract

We demonstrate self-supervised pretraining (SSP) is a scalable solution to deep learning with differential privacy (DP) regardless of the size of available public datasets in image classification. When facing the lack of public datasets, we show the features generated by SSP on only one single image enable a private classifier to obtain much better utility than the non-learned handcrafted features under the same privacy budget. When a moderate or large size public dataset is available, the features produced by SSP greatly outperform the features trained with labels on various complex private datasets under the same private budget. We also compared multiple DP-enabled training frameworks to train a private classifier on the features generated by SSP. Finally, we report a non-trivial utility 25.3\% of a private ImageNet-1K dataset when ϵ=3\epsilon=3ϵ=3. Our source code can be found at \url{https://github.com/UnchartedRLab/SSP}.

View on arXiv
Comments on this paper