ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.07049
  4. Cited By
Dimensionality of datasets in object detection networks

Dimensionality of datasets in object detection networks

13 October 2022
Ajay Chawda
A. Vierling
Karsten Berns
    3DPC
ArXiv (abs)PDFHTML

Papers citing "Dimensionality of datasets in object detection networks"

12 / 12 papers shown
Title
Intrinsic Dimensionality Estimation within Tight Localities: A
  Theoretical and Experimental Analysis
Intrinsic Dimensionality Estimation within Tight Localities: A Theoretical and Experimental Analysis
Laurent Amsaleg
Oussama Chelly
Michael E. Houle
Ken-ichi Kawarabayashi
Miloš Radovanović
Weeris Treeratanajaru
68
51
0
29 Sep 2022
Local intrinsic dimensionality estimators based on concentration of
  measure
Local intrinsic dimensionality estimators based on concentration of measure
Jonathan Bac
A. Zinovyev
31
10
0
31 Jan 2020
Intrinsic dimension of data representations in deep neural networks
Intrinsic dimension of data representations in deep neural networks
A. Ansuini
Alessandro Laio
Jakob H. Macke
D. Zoccolan
AI4CE
78
279
0
29 May 2019
Dimensionality-Driven Learning with Noisy Labels
Dimensionality-Driven Learning with Noisy Labels
Xingjun Ma
Yisen Wang
Michael E. Houle
Shuo Zhou
S. Erfani
Shutao Xia
S. Wijewickrema
James Bailey
NoLa
76
434
0
07 Jun 2018
On the Intrinsic Dimensionality of Image Representations
On the Intrinsic Dimensionality of Image Representations
Sixue Gong
Vishnu Boddeti
Anil K. Jain
52
73
0
26 Mar 2018
Estimating the intrinsic dimension of datasets by a minimal neighborhood
  information
Estimating the intrinsic dimension of datasets by a minimal neighborhood information
Elena Facco
M. d’Errico
Alex Rodriguez
Alessandro Laio
51
327
0
19 Mar 2018
Characterizing Adversarial Subspaces Using Local Intrinsic
  Dimensionality
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
Basel Alomair
Michael E. Houle
James Bailey
AAML
111
739
0
08 Jan 2018
Understanding deep learning requires rethinking generalization
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
345
4,629
0
10 Nov 2016
You Only Look Once: Unified, Real-Time Object Detection
You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon
S. Divvala
Ross B. Girshick
Ali Farhadi
ObjD
705
36,997
0
08 Jun 2015
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
  Networks
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
Shaoqing Ren
Kaiming He
Ross B. Girshick
Jian Sun
AIMatObjD
520
62,360
0
04 Jun 2015
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,479
0
04 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
413
43,777
0
01 May 2014
1