ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04686
  4. Cited By
Utilizing Explainable AI for improving the Performance of Neural
  Networks

Utilizing Explainable AI for improving the Performance of Neural Networks

7 October 2022
Huawei Sun
Lorenzo Servadei
Hao Feng
Michael Stephan
Robert Wille
Avik Santra
ArXiv (abs)PDFHTML

Papers citing "Utilizing Explainable AI for improving the Performance of Neural Networks"

20 / 20 papers shown
Title
Cross-modal Learning of Graph Representations using Radar Point Cloud
  for Long-Range Gesture Recognition
Cross-modal Learning of Graph Representations using Radar Point Cloud for Long-Range Gesture Recognition
Souvik Hazra
Hao Feng
Gamze Naz Kiprit
Michael Stephan
Lorenzo Servadei
Robert Wille
R. Weigel
Avik Santra
3DPC
44
6
0
31 Mar 2022
Label-Aware Ranked Loss for robust People Counting using Automotive
  in-cabin Radar
Label-Aware Ranked Loss for robust People Counting using Automotive in-cabin Radar
Lorenzo Servadei
Huawei Sun
Julius Ott
Michael Stephan
Souvik Hazra
Thomas Stadelmayer
Daniela Sanchez Lopera
Robert Wille
Avik Santra
76
11
0
12 Oct 2021
SHAP values for Explaining CNN-based Text Classification Models
SHAP values for Explaining CNN-based Text Classification Models
Wei Zhao
Tarun Joshi
V. Nair
Agus Sudjianto
FAtt
40
36
0
26 Aug 2020
Utilizing Explainable AI for Quantization and Pruning of Deep Neural
  Networks
Utilizing Explainable AI for Quantization and Pruning of Deep Neural Networks
Muhammad Sabih
Frank Hannig
J. Teich
MQ
93
25
0
20 Aug 2020
A Survey of Deep Learning Techniques for Autonomous Driving
A Survey of Deep Learning Techniques for Autonomous Driving
Sorin Grigorescu
Bogdan Trasnea
Tiberiu T. Cocias
G. Macesanu
3DPC
83
1,401
0
17 Oct 2019
MathQA: Towards Interpretable Math Word Problem Solving with
  Operation-Based Formalisms
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms
Aida Amini
Saadia Gabriel
Shanchuan Lin
Rik Koncel-Kedziorski
Yejin Choi
Hannaneh Hajishirzi
AIMatReLMAI4CE
122
577
0
30 May 2019
The Limits and Potentials of Deep Learning for Robotics
The Limits and Potentials of Deep Learning for Robotics
Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
R. Hadsell
Dieter Fox
...
B. Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
Peter Corke
80
529
0
18 Apr 2018
Explainable Prediction of Medical Codes from Clinical Text
Explainable Prediction of Medical Codes from Clinical Text
J. Mullenbach
Sarah Wiegreffe
J. Duke
Jimeng Sun
Jacob Eisenstein
FAtt
88
574
0
15 Feb 2018
Explainable Artificial Intelligence: Understanding, Visualizing and
  Interpreting Deep Learning Models
Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models
Wojciech Samek
Thomas Wiegand
K. Müller
XAIVLM
75
1,195
0
28 Aug 2017
Deep Learning in Robotics: A Review of Recent Research
Deep Learning in Robotics: A Review of Recent Research
H. A. Pierson
Michael S. Gashler
3DV
72
270
0
22 Jul 2017
A Unified Approach to Interpreting Model Predictions
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
1.1K
22,002
0
22 May 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
321
20,070
0
07 Oct 2016
Improving the Robustness of Deep Neural Networks via Stability Training
Improving the Robustness of Deep Neural Networks via Stability Training
Stephan Zheng
Yang Song
Thomas Leung
Ian Goodfellow
OOD
50
639
0
15 Apr 2016
Understanding How Image Quality Affects Deep Neural Networks
Understanding How Image Quality Affects Deep Neural Networks
Samuel F. Dodge
Lina Karam
VLM
65
732
0
14 Apr 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAttFaML
1.2K
17,027
0
16 Feb 2016
Learning Deep Features for Discriminative Localization
Learning Deep Features for Discriminative Localization
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
SSLSSegFAtt
250
9,326
0
14 Dec 2015
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,322
0
10 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
151
4,903
0
14 Nov 2015
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
277
14,961
1
21 Dec 2013
Network In Network
Network In Network
Min Lin
Qiang Chen
Shuicheng Yan
294
6,283
0
16 Dec 2013
1