ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.04561
  4. Cited By
A Comprehensive Survey of Data Augmentation in Visual Reinforcement
  Learning

A Comprehensive Survey of Data Augmentation in Visual Reinforcement Learning

10 October 2022
Guozheng Ma
Zhen Wang
Zhecheng Yuan
Xueqian Wang
Bo Yuan
Dacheng Tao
    OffRL
ArXivPDFHTML

Papers citing "A Comprehensive Survey of Data Augmentation in Visual Reinforcement Learning"

14 / 14 papers shown
Title
Learning Better with Less: Effective Augmentation for Sample-Efficient
  Visual Reinforcement Learning
Learning Better with Less: Effective Augmentation for Sample-Efficient Visual Reinforcement Learning
Guozheng Ma
Linrui Zhang
Haoyu Wang
Lu Li
Zilin Wang
Zhen Wang
Li Shen
Xueqian Wang
Dacheng Tao
42
10
0
25 May 2023
On Pre-Training for Visuo-Motor Control: Revisiting a
  Learning-from-Scratch Baseline
On Pre-Training for Visuo-Motor Control: Revisiting a Learning-from-Scratch Baseline
Nicklas Hansen
Zhecheng Yuan
Yanjie Ze
Tongzhou Mu
Aravind Rajeswaran
H. Su
Huazhe Xu
Xiaolong Wang
32
65
0
12 Dec 2022
Learning Task-relevant Representations for Generalization via
  Characteristic Functions of Reward Sequence Distributions
Learning Task-relevant Representations for Generalization via Characteristic Functions of Reward Sequence Distributions
Rui Yang
Jie Wang
Zijie Geng
Mingxuan Ye
Shuiwang Ji
Bin Li
Fengli Wu
OOD
31
20
0
20 May 2022
CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery
CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery
Michael Laskin
Hao Liu
Xue Bin Peng
Denis Yarats
Aravind Rajeswaran
Pieter Abbeel
SSL
74
65
0
01 Feb 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,434
0
11 Nov 2021
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit
  Partial Observability
Why Generalization in RL is Difficult: Epistemic POMDPs and Implicit Partial Observability
Dibya Ghosh
Jad Rahme
Aviral Kumar
Amy Zhang
Ryan P. Adams
Sergey Levine
OffRL
272
109
0
13 Jul 2021
Learning with invariances in random features and kernel models
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
The Distracting Control Suite -- A Challenging Benchmark for
  Reinforcement Learning from Pixels
The Distracting Control Suite -- A Challenging Benchmark for Reinforcement Learning from Pixels
Austin Stone
Oscar Ramirez
K. Konolige
Rico Jonschkowski
129
101
0
07 Jan 2021
Improving Generalization in Reinforcement Learning with Mixture
  Regularization
Improving Generalization in Reinforcement Learning with Mixture Regularization
Kaixin Wang
Bingyi Kang
Jie Shao
Jiashi Feng
106
117
0
21 Oct 2020
Decoupling Representation Learning from Reinforcement Learning
Decoupling Representation Learning from Reinforcement Learning
Adam Stooke
Kimin Lee
Pieter Abbeel
Michael Laskin
SSL
DRL
284
339
0
14 Sep 2020
Do CNNs Encode Data Augmentations?
Do CNNs Encode Data Augmentations?
Eddie Q. Yan
Yanping Huang
OOD
13
5
0
29 Feb 2020
Deep Reinforcement Learning for Autonomous Driving: A Survey
Deep Reinforcement Learning for Autonomous Driving: A Survey
B. R. Kiran
Ibrahim Sobh
V. Talpaert
Patrick Mannion
A. A. Sallab
S. Yogamani
P. Pérez
165
1,630
0
02 Feb 2020
An Introduction to Deep Reinforcement Learning
An Introduction to Deep Reinforcement Learning
Vincent François-Lavet
Peter Henderson
Riashat Islam
Marc G. Bellemare
Joelle Pineau
OffRL
AI4CE
80
1,231
0
30 Nov 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
317
11,681
0
09 Mar 2017
1