ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.11115
  4. Cited By
Uncertainty-aware Perception Models for Off-road Autonomous Unmanned
  Ground Vehicles

Uncertainty-aware Perception Models for Off-road Autonomous Unmanned Ground Vehicles

22 September 2022
Zhaoyuan Yang
Y. Tan
Shiraj Sen
Johan Reimann
John N. Karigiannis
Mohammed A. Yousefhussien
Nurali Virani
ArXivPDFHTML

Papers citing "Uncertainty-aware Perception Models for Off-road Autonomous Unmanned Ground Vehicles"

19 / 19 papers shown
Title
ORFD: A Dataset and Benchmark for Off-Road Freespace Detection
ORFD: A Dataset and Benchmark for Off-Road Freespace Detection
Chen Min
Weizhong Jiang
Dawei Zhao
Jiaolong Xu
Liang Xiao
Yiming Nie
Bin Dai
3DPC
31
57
0
20 Jun 2022
Risk-Aware Off-Road Navigation via a Learned Speed Distribution Map
Risk-Aware Off-Road Navigation via a Learned Speed Distribution Map
Xiaoyi Cai
Michael Everett
Jonathan R. Fink
Jonathan P. How
66
53
0
25 Mar 2022
Navigation-Oriented Scene Understanding for Robotic Autonomy: Learning
  to Segment Driveability in Egocentric Images
Navigation-Oriented Scene Understanding for Robotic Autonomy: Learning to Segment Driveability in Egocentric Images
Galadrielle Humblot-Renaux
Letizia Marchegiani
T. Moeslund
Rikke Gade
SSeg
EgoV
54
15
0
15 Sep 2021
Memory-based Semantic Segmentation for Off-road Unstructured Natural
  Environments
Memory-based Semantic Segmentation for Off-road Unstructured Natural Environments
Youngsaeng Jin
D. Han
Hanseok Ko
19
13
0
12 Aug 2021
A Fine-Grained Dataset and its Efficient Semantic Segmentation for
  Unstructured Driving Scenarios
A Fine-Grained Dataset and its Efficient Semantic Segmentation for Unstructured Driving Scenarios
Kai A. Metzger
Peter Mortimer
Hans-Joachim Wuensche
53
22
0
24 Mar 2021
Masksembles for Uncertainty Estimation
Masksembles for Uncertainty Estimation
Nikita Durasov
Timur M. Bagautdinov
Pierre Baqué
Pascal Fua
OOD
UQCV
40
82
0
15 Dec 2020
RELLIS-3D Dataset: Data, Benchmarks and Analysis
RELLIS-3D Dataset: Data, Benchmarks and Analysis
Peng-Tao Jiang
Philip R. Osteen
Maggie B. Wigness
Srikanth Saripalli
3DV
56
219
0
17 Nov 2020
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
133
18,106
0
28 May 2019
Explicit-risk-aware Path Planning with Reward Maximization
Explicit-risk-aware Path Planning with Reward Maximization
Xuesu Xiao
J. Dufek
Robin Murphy
24
11
0
07 Mar 2019
Deep Multi-modal Object Detection and Semantic Segmentation for
  Autonomous Driving: Datasets, Methods, and Challenges
Deep Multi-modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges
Di Feng
Christian Haase-Schuetz
Lars Rosenbaum
Heinz Hertlein
Claudius Gläser
Fabian Duffhauss
W. Wiesbeck
Klaus C. J. Dietmayer
3DPC
97
1,010
0
21 Feb 2019
IDD: A Dataset for Exploring Problems of Autonomous Navigation in
  Unconstrained Environments
IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments
G. Varma
A. Subramanian
A. Namboodiri
Manmohan Chandraker
C. V. Jawahar
90
324
0
26 Nov 2018
BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning
BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning
Feng Yu
Haofeng Chen
Xin Wang
Wenqi Xian
Yingying Chen
Fangchen Liu
Vashisht Madhavan
Trevor Darrell
VLM
332
2,135
0
12 May 2018
Focal Loss for Dense Object Detection
Focal Loss for Dense Object Detection
Nayeon Lee
Priya Goyal
Ross B. Girshick
Kaiming He
Piotr Dollár
ObjD
112
3,000
0
07 Aug 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
352
4,704
0
15 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
816
5,806
0
05 Dec 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
1.1K
11,606
0
06 Apr 2016
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder
  Architectures for Scene Understanding
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
Alex Kendall
Vijay Badrinarayanan
R. Cipolla
UQCV
BDL
83
1,064
0
09 Nov 2015
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
800
9,302
0
06 Jun 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
1.8K
77,099
0
18 May 2015
1