ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.08411
  4. Cited By
DynaConF: Dynamic Forecasting of Non-Stationary Time Series
v1v2v3 (latest)

DynaConF: Dynamic Forecasting of Non-Stationary Time Series

17 September 2022
Siqi Liu
Andreas M. Lehrmann
    BDLAI4TS
ArXiv (abs)PDFHTML

Papers citing "DynaConF: Dynamic Forecasting of Non-Stationary Time Series"

35 / 35 papers shown
Title
Koopa: Learning Non-stationary Time Series Dynamics with Koopman
  Predictors
Koopa: Learning Non-stationary Time Series Dynamics with Koopman Predictors
Yong Liu
Chenyu Li
Jianmin Wang
Mingsheng Long
AI4TS
81
118
0
30 May 2023
A Time Series is Worth 64 Words: Long-term Forecasting with Transformers
A Time Series is Worth 64 Words: Long-term Forecasting with Transformers
Yuqi Nie
Nam H. Nguyen
Phanwadee Sinthong
Jayant Kalagnanam
AIFinAI4TS
89
1,406
0
27 Nov 2022
TimesNet: Temporal 2D-Variation Modeling for General Time Series
  Analysis
TimesNet: Temporal 2D-Variation Modeling for General Time Series Analysis
Haixu Wu
Teng Hu
Yong Liu
Hang Zhou
Jianmin Wang
Mingsheng Long
AI4TSAIFin
145
813
0
05 Oct 2022
Diffusion-based Time Series Imputation and Forecasting with Structured
  State Space Models
Diffusion-based Time Series Imputation and Forecasting with Structured State Space Models
Juan Miguel Lopez Alcaraz
Nils Strodthoff
DiffM
67
176
0
19 Aug 2022
Learning Deep Time-index Models for Time Series Forecasting
Learning Deep Time-index Models for Time Series Forecasting
Gerald Woo
Chenghao Liu
Doyen Sahoo
Akshat Kumar
Guosheng Lin
AI4TSAI4CE
60
28
0
13 Jul 2022
Non-stationary Transformers: Exploring the Stationarity in Time Series
  Forecasting
Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting
Yong Liu
Haixu Wu
Jianmin Wang
Mingsheng Long
AI4TS
58
418
0
28 May 2022
Continual Learning for Multivariate Time Series Tasks with Variable
  Input Dimensions
Continual Learning for Multivariate Time Series Tasks with Variable Input Dimensions
Vibhor Gupta
Jyoti Narwariya
Pankaj Malhotra
Lovekesh Vig
Gautam M. Shroff
AI4TS
48
21
0
14 Mar 2022
TACTiS: Transformer-Attentional Copulas for Time Series
TACTiS: Transformer-Attentional Copulas for Time Series
Alexandre Drouin
Étienne Marcotte
Nicolas Chapados
AI4TS
251
39
0
07 Feb 2022
ETSformer: Exponential Smoothing Transformers for Time-series
  Forecasting
ETSformer: Exponential Smoothing Transformers for Time-series Forecasting
Gerald Woo
Chenghao Liu
Doyen Sahoo
Akshat Kumar
Guosheng Lin
AI4TS
83
167
0
03 Feb 2022
Deep Explicit Duration Switching Models for Time Series
Deep Explicit Duration Switching Models for Time Series
Abdul Fatir Ansari
Konstantinos Benidis
Richard Kurle
Ali Caner Turkmen
Harold Soh
Alex Smola
Yuyang Wang
Tim Januschowski
BDL
84
20
0
26 Oct 2021
CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
  Series Imputation
CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation
Y. Tashiro
Jiaming Song
Yang Song
Stefano Ermon
BDLDiffM
57
544
0
07 Jul 2021
Autoformer: Decomposition Transformers with Auto-Correlation for
  Long-Term Series Forecasting
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting
Haixu Wu
Jiehui Xu
Jianmin Wang
Mingsheng Long
AI4TS
111
2,293
0
24 Jun 2021
Autoregressive Denoising Diffusion Models for Multivariate Probabilistic
  Time Series Forecasting
Autoregressive Denoising Diffusion Models for Multivariate Probabilistic Time Series Forecasting
Kashif Rasul
Calvin Seward
Ingmar Schuster
Roland Vollgraf
DiffM
102
320
0
28 Jan 2021
Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate
  Time Series Forecasting
Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time Series Forecasting
Nam H. Nguyen
Brian Quanz
BDLAI4TS
184
71
0
25 Jan 2021
Time series forecasting with Gaussian Processes needs priors
Time series forecasting with Gaussian Processes needs priors
Giorgio Corani
A. Benavoli
Marco Zaffalon
GPAI4TS
46
29
0
17 Sep 2020
Stanza: A Nonlinear State Space Model for Probabilistic Inference in
  Non-Stationary Time Series
Stanza: A Nonlinear State Space Model for Probabilistic Inference in Non-Stationary Time Series
Anna K. Yanchenko
S. Mukherjee
BDLAI4TS
24
6
0
11 Jun 2020
Time Series Forecasting With Deep Learning: A Survey
Time Series Forecasting With Deep Learning: A Survey
Bryan Lim
S. Zohren
AI4TSAI4CE
94
1,234
0
28 Apr 2020
Multivariate Probabilistic Time Series Forecasting via Conditioned
  Normalizing Flows
Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows
Kashif Rasul
Abdul-Saboor Sheikh
Ingmar Schuster
Urs M. Bergmann
Roland Vollgraf
BDLAI4TSAI4CE
104
187
0
14 Feb 2020
High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula
  Processes
High-Dimensional Multivariate Forecasting with Low-Rank Gaussian Copula Processes
David Salinas
Michael Bohlke-Schneider
Laurent Callot
Roberto Medico
Jan Gasthaus
AI4TS
71
229
0
07 Oct 2019
N-BEATS: Neural basis expansion analysis for interpretable time series
  forecasting
N-BEATS: Neural basis expansion analysis for interpretable time series forecasting
Boris N. Oreshkin
Dmitri Carpov
Nicolas Chapados
Yoshua Bengio
AI4TS
117
1,066
0
24 May 2019
Neural Processes
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDLUQCVGP
99
515
0
04 Jul 2018
Conditional Neural Processes
Conditional Neural Processes
M. Garnelo
Dan Rosenbaum
Chris J. Maddison
Tiago Ramalho
D. Saxton
Murray Shanahan
Yee Whye Teh
Danilo Jimenez Rezende
S. M. Ali Eslami
UQCVBDL
88
705
0
04 Jul 2018
An Empirical Evaluation of Generic Convolutional and Recurrent Networks
  for Sequence Modeling
An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling
Shaojie Bai
J. Zico Kolter
V. Koltun
DRL
97
4,845
0
04 Mar 2018
Continual Lifelong Learning with Neural Networks: A Review
Continual Lifelong Learning with Neural Networks: A Review
G. I. Parisi
Ronald Kemker
Jose L. Part
Christopher Kanan
S. Wermter
KELMCLL
201
2,896
0
21 Feb 2018
Variational Continual Learning
Variational Continual Learning
Cuong V Nguyen
Yingzhen Li
T. Bui
Richard Turner
CLLVLMBDL
92
735
0
29 Oct 2017
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised
  Learning
A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning
Marco Fraccaro
Simon Kamronn
Ulrich Paquet
Ole Winther
BDL
76
284
0
16 Oct 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
732
132,363
0
12 Jun 2017
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks
David Salinas
Valentin Flunkert
Jan Gasthaus
AI4TSUQCVBDL
85
2,127
0
13 Apr 2017
Modeling Long- and Short-Term Temporal Patterns with Deep Neural
  Networks
Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks
Guokun Lai
Wei-Cheng Chang
Yiming Yang
Hanxiao Liu
BDLAI4TS
110
2,024
0
21 Mar 2017
Overcoming catastrophic forgetting in neural networks
Overcoming catastrophic forgetting in neural networks
J. Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
J. Veness
Guillaume Desjardins
...
A. Grabska-Barwinska
Demis Hassabis
Claudia Clopath
D. Kumaran
R. Hadsell
CLL
374
7,561
0
02 Dec 2016
Improving Variational Inference with Inverse Autoregressive Flow
Improving Variational Inference with Inverse Autoregressive Flow
Diederik P. Kingma
Tim Salimans
Rafal Jozefowicz
Xi Chen
Ilya Sutskever
Max Welling
BDLDRL
147
1,825
0
15 Jun 2016
MADE: Masked Autoencoder for Distribution Estimation
MADE: Masked Autoencoder for Distribution Estimation
M. Germain
Karol Gregor
Iain Murray
Hugo Larochelle
OODSyDaUQCV
175
873
0
12 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.0K
150,312
0
22 Dec 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
455
16,923
0
20 Dec 2013
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks
Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks
Arnaud Doucet
Nando de Freitas
Kevin P. Murphy
Stuart J. Russell
107
1,488
0
16 Jan 2013
1