ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.06103
22
179

Multivariate Probabilistic Time Series Forecasting via Conditioned Normalizing Flows

14 February 2020
Kashif Rasul
Abdul-Saboor Sheikh
Ingmar Schuster
Urs M. Bergmann
Roland Vollgraf
    BDL
    AI4TS
    AI4CE
ArXivPDFHTML
Abstract

Time series forecasting is often fundamental to scientific and engineering problems and enables decision making. With ever increasing data set sizes, a trivial solution to scale up predictions is to assume independence between interacting time series. However, modeling statistical dependencies can improve accuracy and enable analysis of interaction effects. Deep learning methods are well suited for this problem, but multivariate models often assume a simple parametric distribution and do not scale to high dimensions. In this work we model the multivariate temporal dynamics of time series via an autoregressive deep learning model, where the data distribution is represented by a conditioned normalizing flow. This combination retains the power of autoregressive models, such as good performance in extrapolation into the future, with the flexibility of flows as a general purpose high-dimensional distribution model, while remaining computationally tractable. We show that it improves over the state-of-the-art for standard metrics on many real-world data sets with several thousand interacting time-series.

View on arXiv
Comments on this paper