Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.07735
Cited By
Enhance the Visual Representation via Discrete Adversarial Training
16 September 2022
Xiaofeng Mao
YueFeng Chen
Ranjie Duan
Yao Zhu
Gege Qi
Shaokai Ye
Xiaodan Li
Rong Zhang
Hui Xue
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Enhance the Visual Representation via Discrete Adversarial Training"
50 / 64 papers shown
Title
Approximate Nullspace Augmented Finetuning for Robust Vision Transformers
Haoyang Liu
Aditya Singh
Yijiang Li
Haohan Wang
AAML
ViT
66
1
0
15 Mar 2024
Fast AdvProp
Jieru Mei
Yucheng Han
Yutong Bai
Yixiao Zhang
Yingwei Li
Xianhang Li
Alan Yuille
Cihang Xie
AAML
51
8
0
21 Apr 2022
High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach
A. Blattmann
Dominik Lorenz
Patrick Esser
Bjorn Ommer
3DV
197
15,081
0
20 Dec 2021
Pyramid Adversarial Training Improves ViT Performance
Charles Herrmann
Kyle Sargent
Lu Jiang
Ramin Zabih
Huiwen Chang
Ce Liu
Dilip Krishnan
Deqing Sun
ViT
65
57
0
30 Nov 2021
Discrete Representations Strengthen Vision Transformer Robustness
Chengzhi Mao
Lu Jiang
Mostafa Dehghani
Carl Vondrick
Rahul Sukthankar
Irfan Essa
ViT
55
44
0
20 Nov 2021
iBOT: Image BERT Pre-Training with Online Tokenizer
Jinghao Zhou
Chen Wei
Huiyu Wang
Wei Shen
Cihang Xie
Alan Yuille
Tao Kong
48
722
0
15 Nov 2021
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
352
7,600
0
11 Nov 2021
AugMax: Adversarial Composition of Random Augmentations for Robust Training
Haotao Wang
Chaowei Xiao
Jean Kossaifi
Zhiding Yu
Anima Anandkumar
Zhangyang Wang
44
109
0
26 Oct 2021
AdvDrop: Adversarial Attack to DNNs by Dropping Information
Ranjie Duan
YueFeng Chen
Dantong Niu
Yun Yang
•. A. K. Qin
Yuan He
AAML
36
91
0
20 Aug 2021
How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers
Andreas Steiner
Alexander Kolesnikov
Xiaohua Zhai
Ross Wightman
Jakob Uszkoreit
Lucas Beyer
ViT
88
623
0
18 Jun 2021
BEiT: BERT Pre-Training of Image Transformers
Hangbo Bao
Li Dong
Songhao Piao
Furu Wei
ViT
122
2,785
0
15 Jun 2021
Achieving Model Robustness through Discrete Adversarial Training
Maor Ivgi
Jonathan Berant
AAML
32
27
0
11 Apr 2021
An Empirical Study of Training Self-Supervised Vision Transformers
Xinlei Chen
Saining Xie
Kaiming He
ViT
101
1,837
0
05 Apr 2021
Defending Against Image Corruptions Through Adversarial Augmentations
D. A. Calian
Florian Stimberg
Olivia Wiles
Sylvestre-Alvise Rebuffi
András Gyorgy
Timothy A. Mann
Sven Gowal
AAML
34
41
0
02 Apr 2021
Robust and Accurate Object Detection via Adversarial Learning
Xiangning Chen
Cihang Xie
Mingxing Tan
Li Zhang
Cho-Jui Hsieh
Boqing Gong
AAML
51
72
0
23 Mar 2021
Zero-Shot Text-to-Image Generation
Aditya A. Ramesh
Mikhail Pavlov
Gabriel Goh
Scott Gray
Chelsea Voss
Alec Radford
Mark Chen
Ilya Sutskever
VLM
286
4,873
0
24 Feb 2021
Taming Transformers for High-Resolution Image Synthesis
Patrick Esser
Robin Rombach
Bjorn Ommer
ViT
88
2,890
0
17 Dec 2020
Attribute-Guided Adversarial Training for Robustness to Natural Perturbations
Tejas Gokhale
Rushil Anirudh
B. Kailkhura
Jayaraman J. Thiagarajan
Chitta Baral
Yezhou Yang
AAML
OOD
25
37
0
03 Dec 2020
How Well Do Self-Supervised Models Transfer?
Linus Ericsson
Henry Gouk
Timothy M. Hospedales
SSL
70
275
0
26 Nov 2020
Exploring Simple Siamese Representation Learning
Xinlei Chen
Kaiming He
SSL
151
3,992
0
20 Nov 2020
Towards Understanding the Regularization of Adversarial Robustness on Neural Networks
Yuxin Wen
Shuai Li
Kui Jia
AAML
31
24
0
15 Nov 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
164
40,217
0
22 Oct 2020
Do Adversarially Robust ImageNet Models Transfer Better?
Hadi Salman
Andrew Ilyas
Logan Engstrom
Ashish Kapoor
Aleksander Madry
51
423
0
16 Jul 2020
The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization
Dan Hendrycks
Steven Basart
Norman Mu
Saurav Kadavath
Frank Wang
...
Samyak Parajuli
Mike Guo
D. Song
Jacob Steinhardt
Justin Gilmer
OOD
226
1,715
0
29 Jun 2020
Adversarial Self-Supervised Contrastive Learning
Minseon Kim
Jihoon Tack
Sung Ju Hwang
SSL
47
249
0
13 Jun 2020
Large-Scale Adversarial Training for Vision-and-Language Representation Learning
Zhe Gan
Yen-Chun Chen
Linjie Li
Chen Zhu
Yu Cheng
Jingjing Liu
ObjD
VLM
44
491
0
11 Jun 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
177
1,821
0
03 Mar 2020
Understanding and Mitigating the Tradeoff Between Robustness and Accuracy
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
AAML
71
226
0
25 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
146
18,523
0
13 Feb 2020
Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet
Sizhe Chen
Zhengbao He
Chengjin Sun
Jie Yang
Xiaolin Huang
AAML
36
104
0
16 Jan 2020
Adversarial AutoAugment
Xinyu Zhang
Qiang-qiang Wang
Jian Zhang
Zhaobai Zhong
AAML
47
197
0
24 Dec 2019
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty
Dan Hendrycks
Norman Mu
E. D. Cubuk
Barret Zoph
Justin Gilmer
Balaji Lakshminarayanan
OOD
UQCV
70
1,293
0
05 Dec 2019
ColorFool: Semantic Adversarial Colorization
Ali Shahin Shamsabadi
Ricardo Sánchez-Matilla
Andrea Cavallaro
AAML
32
119
0
25 Nov 2019
Adversarial Examples Improve Image Recognition
Cihang Xie
Mingxing Tan
Boqing Gong
Jiang Wang
Alan Yuille
Quoc V. Le
AAML
58
564
0
21 Nov 2019
EfficientDet: Scalable and Efficient Object Detection
Mingxing Tan
Ruoming Pang
Quoc V. Le
58
4,996
0
20 Nov 2019
Towards Large yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance
Zhengyu Zhao
Zhuoran Liu
Martha Larson
AAML
30
143
0
06 Nov 2019
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
169
3,458
0
30 Sep 2019
FreeLB: Enhanced Adversarial Training for Natural Language Understanding
Chen Zhu
Yu Cheng
Zhe Gan
S. Sun
Tom Goldstein
Jingjing Liu
AAML
251
438
0
25 Sep 2019
Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification and Entailment
Di Jin
Zhijing Jin
Qiufeng Wang
Peter Szolovits
SILM
AAML
81
1,064
0
27 Jul 2019
Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming
Claudio Michaelis
Benjamin Mitzkus
Robert Geirhos
E. Rusak
Oliver Bringmann
Alexander S. Ecker
Matthias Bethge
Wieland Brendel
3DPC
68
441
0
17 Jul 2019
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
153
1,454
0
16 Jul 2019
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Arno Solin
Yoshua Bengio
AAML
35
99
0
16 Jun 2019
Adversarial Robustness as a Prior for Learned Representations
Logan Engstrom
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Brandon Tran
Aleksander Madry
OOD
AAML
43
63
0
03 Jun 2019
Learning Robust Global Representations by Penalizing Local Predictive Power
Haohan Wang
Songwei Ge
Eric Xing
Zachary Chase Lipton
OOD
75
944
0
29 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
555
4,735
0
13 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
68
1,825
0
06 May 2019
Benchmarking Neural Network Robustness to Common Corruptions and Perturbations
Dan Hendrycks
Thomas G. Dietterich
OOD
VLM
72
3,399
0
28 Mar 2019
Understanding Straight-Through Estimator in Training Activation Quantized Neural Nets
Penghang Yin
J. Lyu
Shuai Zhang
Stanley Osher
Y. Qi
Jack Xin
MQ
LLMSV
33
312
0
13 Mar 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
92
2,525
0
24 Jan 2019
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
65
2,647
0
29 Nov 2018
1
2
Next