ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.07026
  4. Cited By
Can We Solve 3D Vision Tasks Starting from A 2D Vision Transformer?

Can We Solve 3D Vision Tasks Starting from A 2D Vision Transformer?

15 September 2022
Yi Wang
Zhiwen Fan
Tianlong Chen
Hehe Fan
Zhangyang Wang
    ViT
ArXivPDFHTML

Papers citing "Can We Solve 3D Vision Tasks Starting from A 2D Vision Transformer?"

8 / 8 papers shown
Title
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics
Lukas Klein
Carsten T. Lüth
U. Schlegel
Till J. Bungert
Mennatallah El-Assady
Paul F. Jäger
XAI
ELM
42
2
0
03 Jan 2025
OmniVec: Learning robust representations with cross modal sharing
OmniVec: Learning robust representations with cross modal sharing
Siddharth Srivastava
Gaurav Sharma
SSL
27
64
0
07 Nov 2023
RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in
  Autonomous Driving
RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in Autonomous Driving
Angelika Ando
Spyros Gidaris
Andrei Bursuc
Gilles Puy
Alexandre Boulch
Renaud Marlet
ViT
3DPC
17
71
0
24 Jan 2023
Omnivore: A Single Model for Many Visual Modalities
Omnivore: A Single Model for Many Visual Modalities
Rohit Girdhar
Mannat Singh
Nikhil Ravi
L. V. D. van der Maaten
Armand Joulin
Ishan Misra
223
225
0
20 Jan 2022
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
305
7,443
0
11 Nov 2021
VATT: Transformers for Multimodal Self-Supervised Learning from Raw
  Video, Audio and Text
VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text
Hassan Akbari
Liangzhe Yuan
Rui Qian
Wei-Hong Chuang
Shih-Fu Chang
Yin Cui
Boqing Gong
ViT
248
577
0
22 Apr 2021
Is Space-Time Attention All You Need for Video Understanding?
Is Space-Time Attention All You Need for Video Understanding?
Gedas Bertasius
Heng Wang
Lorenzo Torresani
ViT
280
1,982
0
09 Feb 2021
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,103
0
02 Dec 2016
1