Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2209.06095
Cited By
Deep Variational Free Energy Approach to Dense Hydrogen
13 September 2022
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Variational Free Energy Approach to Dense Hydrogen"
25 / 25 papers shown
Title
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Hao Xie
Saburo Howard
Guglielmo Mazzola
67
2
0
17 Jan 2025
Discovering Quantum Phase Transitions with Fermionic Neural Networks
G. Cassella
H. Sutterud
Sam Azadi
N. Drummond
David Pfau
J. Spencer
W. Foulkes
33
46
0
10 Feb 2022
m
∗
m^\ast
m
∗
of two-dimensional electron gas: a neural canonical transformation study
H.-j. Xie
Linfeng Zhang
Lei Wang
54
8
0
10 Jan 2022
High pressure hydrogen by machine learning and quantum Monte Carlo
Andrea Tirelli
Giacomo Tenti
K. Nakano
S. Sorella
47
20
0
21 Dec 2021
Normalizing flows for atomic solids
Peter Wirnsberger
George Papamakarios
Borja Ibarz
S. Racanière
Andy Ballard
Alexander Pritzel
Charles Blundell
48
40
0
16 Nov 2021
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
Nicholas Gao
Stephan Günnemann
56
38
0
11 Oct 2021
Ab-initio study of interacting fermions at finite temperature with neural canonical transformation
Hao Xie
Linfeng Zhang
Lei Wang
51
26
0
18 May 2021
Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks
Michael Scherbela
Rafael Reisenhofer
Leon Gerard
P. Marquetand
Philipp Grohs
71
49
0
18 May 2021
Scalable Normalizing Flows for Permutation Invariant Densities
Marin Bilos
Stephan Günnemann
TPM
31
24
0
07 Oct 2020
Exchangeable Neural ODE for Set Modeling
Yang Li
Haidong Yi
Christopher M. Bender
Siyuan Shan
Junier B. Oliva
BDL
41
30
0
06 Aug 2020
Equivariant flow-based sampling for lattice gauge theory
G. Kanwar
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
45
175
0
13 Mar 2020
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
53
89
0
12 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
195
1,691
0
05 Dec 2019
Equivariant Flows: sampling configurations for multi-body systems with symmetric energies
Jonas Köhler
Leon Klein
Frank Noé
73
91
0
02 Oct 2019
Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks
David Pfau
J. Spencer
A. G. Matthews
W. Foulkes
72
461
0
05 Sep 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
67
408
0
25 Jun 2019
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
46
218
0
26 Apr 2019
Solving Statistical Mechanics Using Variational Autoregressive Networks
Dian Wu
Lei Wang
Pan Zhang
61
185
0
27 Sep 2018
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
75
63
0
26 Sep 2018
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
59
125
0
08 Feb 2018
Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics
Linfeng Zhang
Jiequn Han
Han Wang
R. Car
E. Weinan
64
1,147
0
30 Jul 2017
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
71
279
0
11 May 2015
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
95
1,009
0
19 Mar 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
154
2,796
0
20 Feb 2015
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
248
2,621
0
29 Jun 2012
1