ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.06095
  4. Cited By
Deep Variational Free Energy Approach to Dense Hydrogen

Deep Variational Free Energy Approach to Dense Hydrogen

13 September 2022
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
ArXivPDFHTML

Papers citing "Deep Variational Free Energy Approach to Dense Hydrogen"

25 / 25 papers shown
Title
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Hao Xie
Saburo Howard
Guglielmo Mazzola
67
2
0
17 Jan 2025
Discovering Quantum Phase Transitions with Fermionic Neural Networks
Discovering Quantum Phase Transitions with Fermionic Neural Networks
G. Cassella
H. Sutterud
Sam Azadi
N. Drummond
David Pfau
J. Spencer
W. Foulkes
33
46
0
10 Feb 2022
$m^\ast$ of two-dimensional electron gas: a neural canonical
  transformation study
m∗m^\astm∗ of two-dimensional electron gas: a neural canonical transformation study
H.-j. Xie
Linfeng Zhang
Lei Wang
54
8
0
10 Jan 2022
High pressure hydrogen by machine learning and quantum Monte Carlo
High pressure hydrogen by machine learning and quantum Monte Carlo
Andrea Tirelli
Giacomo Tenti
K. Nakano
S. Sorella
47
20
0
21 Dec 2021
Normalizing flows for atomic solids
Normalizing flows for atomic solids
Peter Wirnsberger
George Papamakarios
Borja Ibarz
S. Racanière
Andy Ballard
Alexander Pritzel
Charles Blundell
48
40
0
16 Nov 2021
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave
  Functions
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
Nicholas Gao
Stephan Günnemann
56
38
0
11 Oct 2021
Ab-initio study of interacting fermions at finite temperature with
  neural canonical transformation
Ab-initio study of interacting fermions at finite temperature with neural canonical transformation
Hao Xie
Linfeng Zhang
Lei Wang
51
26
0
18 May 2021
Solving the electronic Schrödinger equation for multiple nuclear
  geometries with weight-sharing deep neural networks
Solving the electronic Schrödinger equation for multiple nuclear geometries with weight-sharing deep neural networks
Michael Scherbela
Rafael Reisenhofer
Leon Gerard
P. Marquetand
Philipp Grohs
71
49
0
18 May 2021
Scalable Normalizing Flows for Permutation Invariant Densities
Scalable Normalizing Flows for Permutation Invariant Densities
Marin Bilos
Stephan Günnemann
TPM
31
24
0
07 Oct 2020
Exchangeable Neural ODE for Set Modeling
Exchangeable Neural ODE for Set Modeling
Yang Li
Haidong Yi
Christopher M. Bender
Siyuan Shan
Junier B. Oliva
BDL
41
30
0
06 Aug 2020
Equivariant flow-based sampling for lattice gauge theory
Equivariant flow-based sampling for lattice gauge theory
G. Kanwar
M. S. Albergo
D. Boyda
Kyle Cranmer
D. Hackett
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
45
175
0
13 Mar 2020
Targeted free energy estimation via learned mappings
Targeted free energy estimation via learned mappings
Peter Wirnsberger
A. J. Ballard
George Papamakarios
Stuart Abercrombie
S. Racanière
Alexander Pritzel
Danilo Jimenez Rezende
Charles Blundell
53
89
0
12 Feb 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
195
1,691
0
05 Dec 2019
Equivariant Flows: sampling configurations for multi-body systems with
  symmetric energies
Equivariant Flows: sampling configurations for multi-body systems with symmetric energies
Jonas Köhler
Leon Klein
Frank Noé
73
91
0
02 Oct 2019
Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep
  Neural Networks
Ab-Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks
David Pfau
J. Spencer
A. G. Matthews
W. Foulkes
72
461
0
05 Sep 2019
Monte Carlo Gradient Estimation in Machine Learning
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
67
408
0
25 Jun 2019
Flow-based generative models for Markov chain Monte Carlo in lattice
  field theory
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
46
218
0
26 Apr 2019
Solving Statistical Mechanics Using Variational Autoregressive Networks
Solving Statistical Mechanics Using Variational Autoregressive Networks
Dian Wu
Lei Wang
Pan Zhang
61
185
0
27 Sep 2018
Monge-Ampère Flow for Generative Modeling
Monge-Ampère Flow for Generative Modeling
Linfeng Zhang
E. Weinan
Lei Wang
DRL
75
63
0
26 Sep 2018
Neural Network Renormalization Group
Neural Network Renormalization Group
Shuo-Hui Li
Lei Wang
BDL
DRL
59
125
0
08 Feb 2018
Deep Potential Molecular Dynamics: a scalable model with the accuracy of
  quantum mechanics
Deep Potential Molecular Dynamics: a scalable model with the accuracy of quantum mechanics
Linfeng Zhang
Jiequn Han
Han Wang
R. Car
E. Weinan
64
1,147
0
30 Jul 2017
On Markov chain Monte Carlo methods for tall data
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
71
279
0
11 May 2015
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
Optimizing Neural Networks with Kronecker-factored Approximate Curvature
James Martens
Roger C. Grosse
ODL
95
1,009
0
19 Mar 2015
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
154
2,796
0
20 Feb 2015
Stochastic Variational Inference
Stochastic Variational Inference
Matt Hoffman
David M. Blei
Chong-Jun Wang
John Paisley
BDL
248
2,621
0
29 Jun 2012
1