ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.04750
  4. Cited By
Parallel MCMC Algorithms: Theoretical Foundations, Algorithm Design,
  Case Studies
v1v2 (latest)

Parallel MCMC Algorithms: Theoretical Foundations, Algorithm Design, Case Studies

10 September 2022
N. Glatt-Holtz
Andrew J Holbrook
J. Krometis
Cecilia F. Mondaini
ArXiv (abs)PDFHTML

Papers citing "Parallel MCMC Algorithms: Theoretical Foundations, Algorithm Design, Case Studies"

17 / 17 papers shown
Title
A quantum parallel Markov chain Monte Carlo
A quantum parallel Markov chain Monte Carlo
Andrew J Holbrook
52
8
0
01 Dec 2021
Generating MCMC proposals by randomly rotating the regular simplex
Generating MCMC proposals by randomly rotating the regular simplex
Andrew J Holbrook
39
8
0
13 Oct 2021
A general perspective on the Metropolis-Hastings kernel
A general perspective on the Metropolis-Hastings kernel
Christophe Andrieu
Anthony Lee
Samuel Livingstone
74
25
0
29 Dec 2020
On the accept-reject mechanism for Metropolis-Hastings algorithms
On the accept-reject mechanism for Metropolis-Hastings algorithms
N. Glatt-Holtz
J. Krometis
Cecilia F. Mondaini
74
10
0
09 Nov 2020
Involutive MCMC: a Unifying Framework
Involutive MCMC: a Unifying Framework
Kirill Neklyudov
Max Welling
Evgenii Egorov
Dmitry Vetrov
70
38
0
30 Jun 2020
Mixing Rates for Hamiltonian Monte Carlo Algorithms in Finite and
  Infinite Dimensions
Mixing Rates for Hamiltonian Monte Carlo Algorithms in Finite and Infinite Dimensions
N. Glatt-Holtz
Cecilia F. Mondaini
163
10
0
17 Mar 2020
Massive parallelization boosts big Bayesian multidimensional scaling
Massive parallelization boosts big Bayesian multidimensional scaling
Andrew J Holbrook
P. Lemey
G. Baele
S. Dellicour
D. Brockmann
A. Rambaut
M. Suchard
43
29
0
11 May 2019
On Bayesian Consistency for Flows Observed Through a Passive Scalar
On Bayesian Consistency for Flows Observed Through a Passive Scalar
J. Borggaard
N. Glatt-Holtz
J. Krometis
19
5
0
13 Sep 2018
Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal
  densities?
Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal densities?
Oren Mangoubi
Natesh S. Pillai
Aaron Smith
96
32
0
09 Aug 2018
A multiple-try Metropolis-Hastings algorithm with tailored proposals
A multiple-try Metropolis-Hastings algorithm with tailored proposals
Xin Luo
H. Tjelmeland
39
9
0
05 Jul 2018
TensorFlow Distributions
TensorFlow Distributions
Joshua V. Dillon
I. Langmore
Dustin Tran
E. Brevdo
Srinivas Vasudevan
David A. Moore
Brian Patton
Alexander A. Alemi
Matt Hoffman
Rif A. Saurous
GP
104
352
0
28 Nov 2017
Geometric integrators and the Hamiltonian Monte Carlo method
Geometric integrators and the Hamiltonian Monte Carlo method
Nawaf Bou-Rabee
J. Sanz-Serna
58
98
0
14 Nov 2017
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNNAI4CE
433
18,361
0
27 May 2016
Asynchronous Gibbs Sampling
Asynchronous Gibbs Sampling
Alexander Terenin
Daniel P. Simpson
D. Draper
37
43
0
30 Sep 2015
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
292
3,282
0
09 Jun 2012
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
MCMC Methods for Functions: Modifying Old Algorithms to Make Them Faster
S. Cotter
Gareth O. Roberts
Andrew M. Stuart
D. White
102
480
0
03 Feb 2012
Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions
Spectral gaps for a Metropolis-Hastings algorithm in infinite dimensions
Martin Hairer
Andrew M. Stuart
Sebastian J. Vollmer
102
188
0
06 Dec 2011
1