Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2208.08056
Cited By
Sampling Through the Lens of Sequential Decision Making
17 August 2022
J. Dou
Alvin Pan
Runxue Bao
Haiyi Mao
Lei Luo
Zhi-Hong Mao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sampling Through the Lens of Sequential Decision Making"
46 / 46 papers shown
Title
COEM: Cross-Modal Embedding for MetaCell Identification
Haiyi Mao
M. Jia
Jason Xiaotian Dou
Haotian Zhang
J. Benos
33
7
0
15 Jul 2022
CIC: Contrastive Intrinsic Control for Unsupervised Skill Discovery
Michael Laskin
Hao Liu
Xue Bin Peng
Denis Yarats
Aravind Rajeswaran
Pieter Abbeel
SSL
128
68
0
01 Feb 2022
Decentralized Mean Field Games
Sriram Ganapathi Subramanian
Matthew E. Taylor
Mark Crowley
Pascal Poupart
OOD
OffRL
73
15
0
16 Dec 2021
DR3: Value-Based Deep Reinforcement Learning Requires Explicit Regularization
Aviral Kumar
Rishabh Agarwal
Tengyu Ma
Aaron Courville
George Tucker
Sergey Levine
OffRL
58
69
0
09 Dec 2021
Augmenting Reinforcement Learning with Behavior Primitives for Diverse Manipulation Tasks
Soroush Nasiriany
Huihan Liu
Yuke Zhu
108
112
0
07 Oct 2021
Desiderata for Representation Learning: A Causal Perspective
Yixin Wang
Michael I. Jordan
CML
51
83
0
08 Sep 2021
AdaRL: What, Where, and How to Adapt in Transfer Reinforcement Learning
Erdun Gao
Fan Feng
Chaochao Lu
Sara Magliacane
Kun Zhang
78
68
0
06 Jul 2021
Decision Transformer: Reinforcement Learning via Sequence Modeling
Lili Chen
Kevin Lu
Aravind Rajeswaran
Kimin Lee
Aditya Grover
Michael Laskin
Pieter Abbeel
A. Srinivas
Igor Mordatch
OffRL
118
1,640
0
02 Jun 2021
MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning Models on MIMIC-IV Dataset
Chuizheng Meng
Loc Trinh
Nan Xu
Yan Liu
49
30
0
12 Feb 2021
Partially Observable Mean Field Reinforcement Learning
Sriram Ganapathi Subramanian
Matthew E. Taylor
Mark Crowley
Pascal Poupart
OOD
64
27
0
31 Dec 2020
Is Pessimism Provably Efficient for Offline RL?
Ying Jin
Zhuoran Yang
Zhaoran Wang
OffRL
162
358
0
30 Dec 2020
Parrot: Data-Driven Behavioral Priors for Reinforcement Learning
Avi Singh
Huihan Liu
G. Zhou
Albert Yu
Nicholas Rhinehart
Sergey Levine
OffRL
OnRL
58
142
0
19 Nov 2020
Thinking Fast and Slow in AI
G. Booch
F. Fabiano
L. Horesh
Kiran Kate
J. Lenchner
...
Andrea Loreggia
K. Murugesan
Nicholas Mattei
F. Rossi
Biplav Srivastava
63
96
0
12 Oct 2020
Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal Algorithm Escaping the Curse of Horizon
Zihan Zhang
Xiangyang Ji
S. Du
OffRL
95
105
0
28 Sep 2020
Improving Machine Reading Comprehension with Contextualized Commonsense Knowledge
Kai Sun
Dian Yu
Jianshu Chen
Dong Yu
Claire Cardie
49
12
0
12 Sep 2020
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan
Yu Zheng
Wei Ao
Xiao Zeng
Mi Zhang
SSL
AI4CE
84
102
0
12 Jun 2020
Contrastive Multi-View Representation Learning on Graphs
Kaveh Hassani
Amir Hosein Khas Ahmadi
SSL
222
1,301
0
10 Jun 2020
Weakly-Supervised Reinforcement Learning for Controllable Behavior
Lisa Lee
Benjamin Eysenbach
Ruslan Salakhutdinov
S. Gu
Chelsea Finn
SSL
62
26
0
06 Apr 2020
Revisiting Training Strategies and Generalization Performance in Deep Metric Learning
Karsten Roth
Timo Milbich
Samarth Sinha
Prateek Gupta
Bjorn Ommer
Joseph Paul Cohen
49
170
0
19 Feb 2020
Multi Type Mean Field Reinforcement Learning
Sriram Ganapathi Subramanian
Pascal Poupart
Matthew E. Taylor
N. Hegde
AI4CE
40
56
0
06 Feb 2020
Provably Efficient Exploration in Policy Optimization
Qi Cai
Zhuoran Yang
Chi Jin
Zhaoran Wang
51
281
0
12 Dec 2019
Convergent Policy Optimization for Safe Reinforcement Learning
Ming Yu
Zhuoran Yang
Mladen Kolar
Zhaoran Wang
63
95
0
26 Oct 2019
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence
Lingxiao Wang
Qi Cai
Zhuoran Yang
Zhaoran Wang
80
241
0
29 Aug 2019
Large Scale Adversarial Representation Learning
Jeff Donahue
Karen Simonyan
SSL
124
543
0
04 Jul 2019
Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model
Alex X. Lee
Anusha Nagabandi
Pieter Abbeel
Sergey Levine
OffRL
BDL
78
380
0
01 Jul 2019
Global Convergence of Policy Gradient Methods to (Almost) Locally Optimal Policies
Kai Zhang
Alec Koppel
Haoqi Zhu
Tamer Basar
65
190
0
19 Jun 2019
DeepMDP: Learning Continuous Latent Space Models for Representation Learning
Carles Gelada
Saurabh Kumar
Jacob Buckman
Ofir Nachum
Marc G. Bellemare
BDL
75
287
0
06 Jun 2019
Learning Actionable Representations with Goal-Conditioned Policies
Dibya Ghosh
Abhishek Gupta
Sergey Levine
61
109
0
19 Nov 2018
Visual Reinforcement Learning with Imagined Goals
Ashvin Nair
Vitchyr H. Pong
Murtaza Dalal
Shikhar Bahl
Steven Lin
Sergey Levine
SSL
75
543
0
12 Jul 2018
Unsupervised Video Object Segmentation for Deep Reinforcement Learning
Vikrant Goel
James Weng
Pascal Poupart
OCL
59
66
0
20 May 2018
Mean Field Multi-Agent Reinforcement Learning
Yaodong Yang
Rui Luo
Minne Li
M. Zhou
Weinan Zhang
Jun Wang
AI4CE
61
574
0
15 Feb 2018
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor
Tuomas Haarnoja
Aurick Zhou
Pieter Abbeel
Sergey Levine
296
8,334
0
04 Jan 2018
What Words Do We Use to Lie?: Word Choice in Deceptive Messages
J. Dou
Michelle Liu
Haaris Muneer
Adam Schlussel
22
6
0
01 Oct 2017
First-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization
Aryan Mokhtari
Alejandro Ribeiro
59
20
0
02 Sep 2017
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
478
19,019
0
20 Jul 2017
Sampling Matters in Deep Embedding Learning
Chaoxia Wu
R. Manmatha
Alex Smola
Philipp Krahenbuhl
92
923
0
23 Jun 2017
Loss is its own Reward: Self-Supervision for Reinforcement Learning
Evan Shelhamer
Parsa Mahmoudieh
Max Argus
Trevor Darrell
SSL
77
186
0
21 Dec 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Michael I. Jordan
82
96
0
12 Sep 2016
Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy
Aryan Mokhtari
Alejandro Ribeiro
ODL
44
32
0
24 May 2016
On Deep Multi-View Representation Learning: Objectives and Optimization
Weiran Wang
R. Arora
Karen Livescu
J. Bilmes
SSL
DRL
76
913
0
02 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,878
0
10 Dec 2015
Deep Metric Learning via Lifted Structured Feature Embedding
Hyun Oh Song
Yu Xiang
Stefanie Jegelka
Silvio Savarese
FedML
SSL
DML
94
1,643
0
19 Nov 2015
FaceNet: A Unified Embedding for Face Recognition and Clustering
Florian Schroff
Dmitry Kalenichenko
James Philbin
3DH
367
13,143
0
12 Mar 2015
Vector-space Analysis of Belief-state Approximation for POMDPs
Pascal Poupart
Craig Boutilier
70
18
0
10 Jan 2013
Anytime Marginal MAP Inference
Denis Deratani Mauá
Cassio Polpo de Campos
52
24
0
27 Jun 2012
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
253
12,435
0
24 Jun 2012
1