ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1206.6424
21
24

Anytime Marginal MAP Inference

27 June 2012
Denis Deratani Mauá
Cassio Polpo de Campos
ArXivPDFHTML
Abstract

This paper presents a new anytime algorithm for the marginal MAP problem in graphical models. The algorithm is described in detail, its complexity and convergence rate are studied, and relations to previous theoretical results for the problem are discussed. It is shown that the algorithm runs in polynomial-time if the underlying graph of the model has bounded tree-width, and that it provides guarantees to the lower and upper bounds obtained within a fixed amount of computational resources. Experiments with both real and synthetic generated models highlight its main characteristics and show that it compares favorably against Park and Darwiche's systematic search, particularly in the case of problems with many MAP variables and moderate tree-width.

View on arXiv
Comments on this paper