ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.01462
  4. Cited By
Physics-informed Deep Super-resolution for Spatiotemporal Data

Physics-informed Deep Super-resolution for Spatiotemporal Data

2 August 2022
Pu Ren
Chengping Rao
Yang Liu
Zihan Ma
Qi Wang
Jianxin Wang
Hao Sun
ArXivPDFHTML

Papers citing "Physics-informed Deep Super-resolution for Spatiotemporal Data"

50 / 50 papers shown
Title
SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning
SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning
Pu Ren
N. Benjamin Erichson
Shashank Subramanian
Omer San
Z. Lukić
Michael W. Mahoney
Michael W. Mahoney
60
14
0
24 Jun 2023
Discovering Nonlinear PDEs from Scarce Data with Physics-encoded
  Learning
Discovering Nonlinear PDEs from Scarce Data with Physics-encoded Learning
Chengping Rao
Pu Ren
Yang Liu
Hao Sun
AI4CE
73
29
0
28 Jan 2022
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
  Spatiotemporal PDEs
PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving Spatiotemporal PDEs
Pu Ren
Chengping Rao
Yang Liu
Jianxun Wang
Hao Sun
DiffM
AI4CE
80
199
0
26 Jun 2021
Machine learning accelerated computational fluid dynamics
Machine learning accelerated computational fluid dynamics
Dmitrii Kochkov
Jamie A. Smith
Ayya Alieva
Qing Wang
M. Brenner
Stephan Hoyer
AI4CE
82
849
0
28 Jan 2021
GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution
GLEAN: Generative Latent Bank for Large-Factor Image Super-Resolution
Kelvin C. K. Chan
Xintao Wang
Xiangyu Xu
Liang Feng
Chen Change Loy
62
252
0
01 Dec 2020
Pre-Trained Image Processing Transformer
Pre-Trained Image Processing Transformer
Hanting Chen
Yunhe Wang
Tianyu Guo
Chang Xu
Yiping Deng
Zhenhua Liu
Siwei Ma
Chunjing Xu
Chao Xu
Wen Gao
VLM
ViT
120
1,659
0
01 Dec 2020
Physics-Informed Neural Network Super Resolution for Advection-Diffusion
  Models
Physics-Informed Neural Network Super Resolution for Advection-Diffusion Models
Chulin Wang
E. Bentivegna
Wang Zhou
L. Klein
Bruce Elmegreen
DiffM
34
32
0
04 Nov 2020
Fourier Neural Operator for Parametric Partial Differential Equations
Fourier Neural Operator for Parametric Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
AI4CE
390
2,355
0
18 Oct 2020
Transformers for Modeling Physical Systems
Transformers for Modeling Physical Systems
N. Geneva
N. Zabaras
AI4CE
33
139
0
04 Oct 2020
Enhanced Quadratic Video Interpolation
Enhanced Quadratic Video Interpolation
Yihao Liu
Liangbin Xie
Liu Siyao
Wenxiu Sun
Yu Qiao
Chao Dong
46
84
0
10 Sep 2020
Physics informed deep learning for computational elastodynamics without
  labeled data
Physics informed deep learning for computational elastodynamics without labeled data
Chengping Rao
Hao Sun
Yang Liu
PINN
AI4CE
37
223
0
10 Jun 2020
Learning Texture Transformer Network for Image Super-Resolution
Learning Texture Transformer Network for Image Super-Resolution
Fuzhi Yang
Huan Yang
Jianlong Fu
Hongtao Lu
B. Guo
SupR
ViT
52
719
0
07 Jun 2020
Physics-informed learning of governing equations from scarce data
Physics-informed learning of governing equations from scarce data
Zhao Chen
Yang Liu
Hao Sun
PINN
AI4CE
22
385
0
05 May 2020
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time
  Super-Resolution Framework
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework
C. Jiang
S. Esmaeilzadeh
Kamyar Azizzadenesheli
K. Kashinath
Mustafa A. Mustafa
H. Tchelepi
P. Marcus
P. Prabhat
Anima Anandkumar
AI4CE
216
141
0
01 May 2020
Neural Operator: Graph Kernel Network for Partial Differential Equations
Neural Operator: Graph Kernel Network for Partial Differential Equations
Zong-Yi Li
Nikola B. Kovachki
Kamyar Azizzadenesheli
Burigede Liu
K. Bhattacharya
Andrew M. Stuart
Anima Anandkumar
92
718
0
07 Mar 2020
Turbulence Enrichment using Physics-informed Generative Adversarial
  Networks
Turbulence Enrichment using Physics-informed Generative Adversarial Networks
Akshay Subramaniam
Man Long Wong
Raunak Borker
S. Nimmagadda
S. Lele
GAN
AI4CE
62
38
0
04 Mar 2020
Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
  Super-Resolution
Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
Xiaoyu Xiang
Yapeng Tian
Yulun Zhang
Y. Fu
J. Allebach
Chenliang Xu
SupR
24
170
0
26 Feb 2020
PyTorch: An Imperative Style, High-Performance Deep Learning Library
PyTorch: An Imperative Style, High-Performance Deep Learning Library
Adam Paszke
Sam Gross
Francisco Massa
Adam Lerer
James Bradbury
...
Sasank Chilamkurthy
Benoit Steiner
Lu Fang
Junjie Bai
Soumith Chintala
ODL
126
42,038
0
03 Dec 2019
Using Physics-Informed Super-Resolution Generative Adversarial Networks
  for Subgrid Modeling in Turbulent Reactive Flows
Using Physics-Informed Super-Resolution Generative Adversarial Networks for Subgrid Modeling in Turbulent Reactive Flows
Mathis Bode
M. Gauding
Zeyu Lian
D. Denker
M. Davidovic
K. Kleinheinz
J. Jitsev
H. Pitsch
AI4CE
24
21
0
26 Nov 2019
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Towards Physics-informed Deep Learning for Turbulent Flow Prediction
Rui Wang
K. Kashinath
M. Mustafa
A. Albert
Rose Yu
PINN
AI4CE
21
361
0
20 Nov 2019
Quadratic video interpolation
Quadratic video interpolation
Xiangyu Xu
Liu Siyao
Wenxiu Sun
Qian Yin
Ming-Hsuan Yang
93
222
0
02 Nov 2019
Dynamic Upsampling of Smoke through Dictionary-based Learning
Dynamic Upsampling of Smoke through Dictionary-based Learning
Kai-Yi Bai
Wei Li
M. Desbrun
Xiaopei Liu
AI4CE
44
27
0
21 Oct 2019
DeepONet: Learning nonlinear operators for identifying differential
  equations based on the universal approximation theorem of operators
DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
Lu Lu
Pengzhan Jin
George Karniadakis
132
2,082
0
08 Oct 2019
RankSRGAN: Generative Adversarial Networks with Ranker for Image
  Super-Resolution
RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution
Wenlong Zhang
Yihao Liu
Chao Dong
Yu Qiao
GAN
45
351
0
18 Aug 2019
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep
  Auto-Regressive Networks
Modeling the Dynamics of PDE Systems with Physics-Constrained Deep Auto-Regressive Networks
N. Geneva
N. Zabaras
AI4CE
22
270
0
13 Jun 2019
EDVR: Video Restoration with Enhanced Deformable Convolutional Networks
EDVR: Video Restoration with Enhanced Deformable Convolutional Networks
Xintao Wang
Kelvin C. K. Chan
K. Yu
Chao Dong
Chen Change Loy
SupR
46
1,008
0
07 May 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
63
860
0
18 Jan 2019
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep
  Network
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network
Zichao Long
Yiping Lu
Bin Dong
AI4CE
39
546
0
30 Nov 2018
Wide Activation for Efficient and Accurate Image Super-Resolution
Wide Activation for Efficient and Accurate Image Super-Resolution
Jiahui Yu
Yuchen Fan
Jianchao Yang
N. Xu
Zhaowen Wang
Xinchao Wang
Thomas Huang
SupR
36
356
0
27 Aug 2018
Image Super-Resolution Using Very Deep Residual Channel Attention
  Networks
Image Super-Resolution Using Very Deep Residual Channel Attention Networks
Yulun Zhang
Kunpeng Li
Kai Li
Lichen Wang
Bineng Zhong
Y. Fu
SupR
91
4,295
0
08 Jul 2018
HybridNet: Integrating Model-based and Data-driven Learning to Predict
  Evolution of Dynamical Systems
HybridNet: Integrating Model-based and Data-driven Learning to Predict Evolution of Dynamical Systems
Yun Long
Xueyuan She
Saibal Mukhopadhyay
34
58
0
19 Jun 2018
PhaseNet for Video Frame Interpolation
PhaseNet for Video Frame Interpolation
Simone Schaub-Meyer
Abdelaziz Djelouah
Brian McWilliams
A. Sorkine-Hornung
Markus Gross
Christopher Schroers
30
179
0
03 Apr 2018
Context-aware Synthesis for Video Frame Interpolation
Context-aware Synthesis for Video Frame Interpolation
Simon Niklaus
Feng Liu
63
408
0
29 Mar 2018
Frame-Recurrent Video Super-Resolution
Frame-Recurrent Video Super-Resolution
Mehdi S. M. Sajjadi
Raviteja Vemulapalli
Matthew A. Brown
SupR
34
503
0
14 Jan 2018
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for
  Video Interpolation
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation
Huaizu Jiang
Deqing Sun
Varun Jampani
Ming-Hsuan Yang
Erik Learned-Miller
Jan Kautz
79
785
0
30 Nov 2017
PDE-Net: Learning PDEs from Data
PDE-Net: Learning PDEs from Data
Zichao Long
Yiping Lu
Xianzhong Ma
Bin Dong
DiffM
AI4CE
19
750
0
26 Oct 2017
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
Deqing Sun
Xiaodong Yang
Ming-Yuan Liu
Jan Kautz
3DPC
222
2,435
0
07 Sep 2017
Video Frame Interpolation via Adaptive Separable Convolution
Video Frame Interpolation via Adaptive Separable Convolution
Simon Niklaus
Long Mai
Feng Liu
78
695
0
05 Aug 2017
Enhanced Deep Residual Networks for Single Image Super-Resolution
Enhanced Deep Residual Networks for Single Image Super-Resolution
Bee Lim
Sanghyun Son
Heewon Kim
Seungjun Nah
Kyoung Mu Lee
SupR
121
5,871
0
10 Jul 2017
Video Frame Synthesis using Deep Voxel Flow
Video Frame Synthesis using Deep Voxel Flow
Ziwei Liu
Raymond A. Yeh
Xiaoou Tang
Yiming Liu
A. Agarwala
58
747
0
08 Feb 2017
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
307
5,205
0
16 Sep 2016
Photo-Realistic Single Image Super-Resolution Using a Generative
  Adversarial Network
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
C. Ledig
Lucas Theis
Ferenc Huszár
Jose Caballero
Andrew Cunningham
...
Andrew P. Aitken
Alykhan Tejani
J. Totz
Zehan Wang
Wenzhe Shi
GAN
215
10,646
0
15 Sep 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training
  of Deep Neural Networks
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
132
1,933
0
25 Feb 2016
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
Accurate Image Super-Resolution Using Very Deep Convolutional Networks
Jiwon Kim
Jung Kwon Lee
Kyoung Mu Lee
SupR
85
6,164
0
14 Nov 2015
Convolutional LSTM Network: A Machine Learning Approach for
  Precipitation Nowcasting
Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
Xingjian Shi
Zhourong Chen
Hao Wang
Dit-Yan Yeung
W. Wong
W. Woo
440
7,952
0
13 Jun 2015
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg
3DV
974
76,547
0
18 May 2015
Image Super-Resolution Using Deep Convolutional Networks
Image Super-Resolution Using Deep Convolutional Networks
Chao Dong
Chen Change Loy
Kaiming He
Xiaoou Tang
SupR
94
8,048
0
31 Dec 2014
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
583
149,474
0
22 Dec 2014
Sequence to Sequence Learning with Neural Networks
Sequence to Sequence Learning with Neural Networks
Ilya Sutskever
Oriol Vinyals
Quoc V. Le
AIMat
255
20,467
0
10 Sep 2014
Generating Sequences With Recurrent Neural Networks
Generating Sequences With Recurrent Neural Networks
Alex Graves
GAN
85
4,025
0
04 Aug 2013
1