ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.13177
  4. Cited By
Sliced Wasserstein Variational Inference

Sliced Wasserstein Variational Inference

26 July 2022
Mingxuan Yi
Song Liu
ArXivPDFHTML

Papers citing "Sliced Wasserstein Variational Inference"

28 / 28 papers shown
Title
Spherical Tree-Sliced Wasserstein Distance
Spherical Tree-Sliced Wasserstein Distance
Hoang V. Tran
Thanh T. Chu
K. Nguyen
Trang Pham
Tam Le
Trung Quoc Nguyen
OT
84
5
0
14 Mar 2025
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Alex Glyn-Davies
Arnaud Vadeboncoeur
O. Deniz Akyildiz
Ieva Kazlauskaite
Mark Girolami
PINN
99
0
0
10 Sep 2024
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
120
40
0
30 Jun 2021
MCMC-Interactive Variational Inference
MCMC-Interactive Variational Inference
Quan Zhang
Huangjie Zheng
Mingyuan Zhou
46
1
0
02 Oct 2020
f-Divergence Variational Inference
f-Divergence Variational Inference
Neng Wan
Dapeng Li
N. Hovakimyan
71
35
0
28 Sep 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
153
54
0
23 Mar 2020
Statistical and Topological Properties of Sliced Probability Divergences
Statistical and Topological Properties of Sliced Probability Divergences
Kimia Nadjahi
Alain Durmus
Lénaïc Chizat
Soheil Kolouri
Shahin Shahrampour
Umut Simsekli
41
86
0
12 Mar 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
393
10,591
0
17 Feb 2020
Asymptotic Guarantees for Learning Generative Models with the
  Sliced-Wasserstein Distance
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance
Kimia Nadjahi
Alain Durmus
Umut Simsekli
Roland Badeau
MedIm
56
63
0
11 Jun 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
51
48
0
23 May 2019
A Contrastive Divergence for Combining Variational Inference and MCMC
A Contrastive Divergence for Combining Variational Inference and MCMC
Francisco J. R. Ruiz
Michalis K. Titsias
BDL
47
60
0
10 May 2019
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Understanding MCMC Dynamics as Flows on the Wasserstein Space
Chang-Shu Liu
Jingwei Zhuo
Jun Zhu
68
22
0
01 Feb 2019
Wasserstein Variational Inference
Wasserstein Variational Inference
L. Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDL
DRL
86
42
0
29 May 2018
Generative Modeling using the Sliced Wasserstein Distance
Generative Modeling using the Sliced Wasserstein Distance
Ishani Deshpande
Ziyu Zhang
Alex Schwing
GAN
55
226
0
29 Mar 2018
Sliced Wasserstein Distance for Learning Gaussian Mixture Models
Sliced Wasserstein Distance for Learning Gaussian Mixture Models
Soheil Kolouri
Gustavo K. Rohde
Heiko Hoffmann
43
123
0
15 Nov 2017
Learning to Draw Samples with Amortized Stein Variational Gradient
  Descent
Learning to Draw Samples with Amortized Stein Variational Gradient Descent
Yihao Feng
Dilin Wang
Qiang Liu
GAN
BDL
61
81
0
20 Jul 2017
Improved Training of Wasserstein GANs
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
201
9,546
0
31 Mar 2017
Approximate Inference with Amortised MCMC
Approximate Inference with Amortised MCMC
Yingzhen Li
Richard Turner
Qiang Liu
BDL
63
62
0
27 Feb 2017
Adversarial Variational Bayes: Unifying Variational Autoencoders and
  Generative Adversarial Networks
Adversarial Variational Bayes: Unifying Variational Autoencoders and Generative Adversarial Networks
L. Mescheder
Sebastian Nowozin
Andreas Geiger
GAN
BDL
113
529
0
17 Jan 2017
Operator Variational Inference
Operator Variational Inference
Rajesh Ranganath
Jaan Altosaar
Dustin Tran
David M. Blei
48
116
0
27 Oct 2016
Stein Variational Gradient Descent: A General Purpose Bayesian Inference
  Algorithm
Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm
Qiang Liu
Dilin Wang
BDL
68
1,092
0
16 Aug 2016
Rényi Divergence Variational Inference
Rényi Divergence Variational Inference
Yingzhen Li
Richard Turner
BDL
91
262
0
06 Feb 2016
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
310
4,179
0
21 May 2015
Reweighted Wake-Sleep
Reweighted Wake-Sleep
J. Bornschein
Yoshua Bengio
BDL
91
183
0
11 Jun 2014
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRL
BDL
134
1,166
0
31 Dec 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
212
4,259
0
04 Jun 2013
Variational Bayesian Inference with Stochastic Search
Variational Bayesian Inference with Stochastic Search
John Paisley
David M. Blei
Michael I. Jordan
BDL
106
500
0
27 Jun 2012
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,281
0
09 Jun 2012
1