ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.09304
  4. Cited By
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
v1v2v3 (latest)

A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics

19 July 2022
Lei Li
Yuliang Wang
ArXiv (abs)PDFHTML

Papers citing "A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics"

24 / 24 papers shown
Title
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Matthew Burns
Qingyuan Hou
Michael Huang
432
1
0
08 Oct 2024
Geometric ergodicity of SGLD via reflection coupling
Geometric ergodicity of SGLD via reflection coupling
Lei Li
Jian‐Guo Liu
Yuliang Wang
87
2
0
17 Jan 2023
On uniform-in-time diffusion approximation for stochastic gradient
  descent
On uniform-in-time diffusion approximation for stochastic gradient descent
Lei Li
Yuliang Wang
83
4
0
11 Jul 2022
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Tyler Farghly
Patrick Rebeschini
83
24
0
25 Nov 2021
SGD with a Constant Large Learning Rate Can Converge to Local Maxima
SGD with a Constant Large Learning Rate Can Converge to Local Maxima
Liu Ziyin
Botao Li
James B. Simon
Masakuni Ueda
50
9
0
25 Jul 2021
On the Origin of Implicit Regularization in Stochastic Gradient Descent
On the Origin of Implicit Regularization in Stochastic Gradient Descent
Samuel L. Smith
Benoit Dherin
David Barrett
Soham De
MLT
47
204
0
28 Jan 2021
Faster Convergence of Stochastic Gradient Langevin Dynamics for
  Non-Log-Concave Sampling
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
88
36
0
19 Oct 2020
On the Generalization Benefit of Noise in Stochastic Gradient Descent
On the Generalization Benefit of Noise in Stochastic Gradient Descent
Samuel L. Smith
Erich Elsen
Soham De
MLT
55
100
0
26 Jun 2020
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under
  local conditions in nonconvex optimization
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
76
47
0
04 Oct 2019
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal
  Rates without Convexity
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal Rates without Convexity
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
52
68
0
25 Jul 2019
Uniform-in-Time Weak Error Analysis for Stochastic Gradient Descent
  Algorithms via Diffusion Approximation
Uniform-in-Time Weak Error Analysis for Stochastic Gradient Descent Algorithms via Diffusion Approximation
Yuanyuan Feng
Tingran Gao
Lei Li
Jian‐Guo Liu
Yulong Lu
45
25
0
02 Feb 2019
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
67
78
0
25 Nov 2018
Non-asymptotic bounds for sampling algorithms without log-concavity
Non-asymptotic bounds for sampling algorithms without log-concavity
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
48
73
0
21 Aug 2018
An Alternative View: When Does SGD Escape Local Minima?
An Alternative View: When Does SGD Escape Local Minima?
Robert D. Kleinberg
Yuanzhi Li
Yang Yuan
MLT
77
317
0
17 Feb 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
75
297
0
29 Sep 2017
Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical
  Viewpoints
Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints
Wenlong Mou
Liwei Wang
Xiyu Zhai
Kai Zheng
MLT
57
159
0
19 Jul 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
69
236
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a
  nonasymptotic analysis
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
75
521
0
13 Feb 2017
Adding Gradient Noise Improves Learning for Very Deep Networks
Adding Gradient Noise Improves Learning for Very Deep Networks
Arvind Neelakantan
Luke Vilnis
Quoc V. Le
Ilya Sutskever
Lukasz Kaiser
Karol Kurach
James Martens
AI4CEODL
83
545
0
21 Nov 2015
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Wenzhe Li
Sungjin Ahn
Max Welling
BDL
82
42
0
16 Oct 2015
Theoretical guarantees for approximate sampling from smooth and
  log-concave densities
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
86
516
0
23 Dec 2014
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,312
0
22 Dec 2014
Consistency and fluctuations for stochastic gradient Langevin dynamics
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
85
235
0
01 Sep 2014
Sparse Regression Learning by Aggregation and Langevin Monte-Carlo
Sparse Regression Learning by Aggregation and Langevin Monte-Carlo
A. Dalalyan
Alexandre B. Tsybakov
185
180
0
06 Mar 2009
1