Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.09304
Cited By
v1
v2
v3 (latest)
A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics
19 July 2022
Lei Li
Yuliang Wang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A sharp uniform-in-time error estimate for Stochastic Gradient Langevin Dynamics"
24 / 24 papers shown
Title
Provable Accuracy Bounds for Hybrid Dynamical Optimization and Sampling
Matthew Burns
Qingyuan Hou
Michael Huang
432
1
0
08 Oct 2024
Geometric ergodicity of SGLD via reflection coupling
Lei Li
Jian‐Guo Liu
Yuliang Wang
87
2
0
17 Jan 2023
On uniform-in-time diffusion approximation for stochastic gradient descent
Lei Li
Yuliang Wang
83
4
0
11 Jul 2022
Time-independent Generalization Bounds for SGLD in Non-convex Settings
Tyler Farghly
Patrick Rebeschini
83
24
0
25 Nov 2021
SGD with a Constant Large Learning Rate Can Converge to Local Maxima
Liu Ziyin
Botao Li
James B. Simon
Masakuni Ueda
50
9
0
25 Jul 2021
On the Origin of Implicit Regularization in Stochastic Gradient Descent
Samuel L. Smith
Benoit Dherin
David Barrett
Soham De
MLT
47
204
0
28 Jan 2021
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
88
36
0
19 Oct 2020
On the Generalization Benefit of Noise in Stochastic Gradient Descent
Samuel L. Smith
Erich Elsen
Soham De
MLT
55
100
0
26 Jun 2020
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
76
47
0
04 Oct 2019
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal Rates without Convexity
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
52
68
0
25 Jul 2019
Uniform-in-Time Weak Error Analysis for Stochastic Gradient Descent Algorithms via Diffusion Approximation
Yuanyuan Feng
Tingran Gao
Lei Li
Jian‐Guo Liu
Yulong Lu
45
25
0
02 Feb 2019
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
67
78
0
25 Nov 2018
Non-asymptotic bounds for sampling algorithms without log-concavity
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
48
73
0
21 Aug 2018
An Alternative View: When Does SGD Escape Local Minima?
Robert D. Kleinberg
Yuanzhi Li
Yang Yuan
MLT
77
317
0
17 Feb 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
75
297
0
29 Sep 2017
Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints
Wenlong Mou
Liwei Wang
Xiyu Zhai
Kai Zheng
MLT
57
159
0
19 Jul 2017
A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics
Yuchen Zhang
Percy Liang
Moses Charikar
69
236
0
18 Feb 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
75
521
0
13 Feb 2017
Adding Gradient Noise Improves Learning for Very Deep Networks
Arvind Neelakantan
Luke Vilnis
Quoc V. Le
Ilya Sutskever
Lukasz Kaiser
Karol Kurach
James Martens
AI4CE
ODL
83
545
0
21 Nov 2015
Scalable MCMC for Mixed Membership Stochastic Blockmodels
Wenzhe Li
Sungjin Ahn
Max Welling
BDL
82
42
0
16 Oct 2015
Theoretical guarantees for approximate sampling from smooth and log-concave densities
A. Dalalyan
86
516
0
23 Dec 2014
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,312
0
22 Dec 2014
Consistency and fluctuations for stochastic gradient Langevin dynamics
Yee Whye Teh
Alexandre Hoang Thiery
Sebastian J. Vollmer
85
235
0
01 Sep 2014
Sparse Regression Learning by Aggregation and Langevin Monte-Carlo
A. Dalalyan
Alexandre B. Tsybakov
185
180
0
06 Mar 2009
1