ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.02008
11
44

Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization

4 October 2019
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
ArXivPDFHTML
Abstract

In this paper, we are concerned with a non-asymptotic analysis of sampling algorithms used in nonconvex optimization. In particular, we obtain non-asymptotic estimates in Wasserstein-1 and Wasserstein-2 distances for a popular class of algorithms called Stochastic Gradient Langevin Dynamics (SGLD). In addition, the aforementioned Wasserstein-2 convergence result can be applied to establish a non-asymptotic error bound for the expected excess risk. Crucially, these results are obtained under a local Lipschitz condition and a local dissipativity condition where we remove the uniform dependence in the data stream. We illustrate the importance of this relaxation by presenting examples from variational inference and from index tracking optimization.

View on arXiv
Comments on this paper