Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.05468
Cited By
Sliced-Wasserstein normalizing flows: beyond maximum likelihood training
12 July 2022
Florentin Coeurdoux
N. Dobigeon
P. Chainais
TPM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Sliced-Wasserstein normalizing flows: beyond maximum likelihood training"
7 / 7 papers shown
Title
Revisiting Sliced Wasserstein on Images: From Vectorization to Convolution
Khai Nguyen
Nhat Ho
56
25
0
04 Apr 2022
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPM
AI4CE
213
1,717
0
05 Dec 2019
Do Deep Generative Models Know What They Don't Know?
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
OOD
85
759
0
22 Oct 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
305
3,144
0
09 Jul 2018
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
176
3,480
0
07 Oct 2016
Improved Techniques for Training GANs
Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
GAN
486
9,073
0
10 Jun 2016
Faster Eigenvector Computation via Shift-and-Invert Preconditioning
Dan Garber
Laurent Dinh
Chi Jin
Jascha Narain Sohl-Dickstein
Samy Bengio
Praneeth Netrapalli
Aaron Sidford
277
3,722
0
26 May 2016
1