ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2207.03208
  4. Cited By
Revisiting Pretraining Objectives for Tabular Deep Learning

Revisiting Pretraining Objectives for Tabular Deep Learning

7 July 2022
Ivan Rubachev
Artem Alekberov
Yu. V. Gorishniy
Artem Babenko
    LMTD
ArXivPDFHTML

Papers citing "Revisiting Pretraining Objectives for Tabular Deep Learning"

29 / 29 papers shown
Title
TabSTAR: A Foundation Tabular Model With Semantically Target-Aware Representations
Alan Arazi
Eilam Shapira
Roi Reichart
LMTD
156
0
0
23 May 2025
TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
TabM: Advancing Tabular Deep Learning with Parameter-Efficient Ensembling
Yury Gorishniy
Akim Kotelnikov
Artem Babenko
LMTD
MoE
224
11
0
31 Oct 2024
On Embeddings for Numerical Features in Tabular Deep Learning
On Embeddings for Numerical Features in Tabular Deep Learning
Yura Gorishniy
Ivan Rubachev
Artem Babenko
LMTD
79
171
0
10 Mar 2022
Are Large-scale Datasets Necessary for Self-Supervised Pre-training?
Are Large-scale Datasets Necessary for Self-Supervised Pre-training?
Alaaeldin El-Nouby
Gautier Izacard
Hugo Touvron
Ivan Laptev
Hervé Jégou
Edouard Grave
SSL
62
149
0
20 Dec 2021
Masked Autoencoders Are Scalable Vision Learners
Masked Autoencoders Are Scalable Vision Learners
Kaiming He
Xinlei Chen
Saining Xie
Yanghao Li
Piotr Dollár
Ross B. Girshick
ViT
TPM
427
7,705
0
11 Nov 2021
SubTab: Subsetting Features of Tabular Data for Self-Supervised
  Representation Learning
SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning
Talip Uçar
Ehsan Hajiramezanali
Lindsay Edwards
LMTD
SSL
58
131
0
08 Oct 2021
Contrastive Mixup: Self- and Semi-Supervised learning for Tabular Domain
Contrastive Mixup: Self- and Semi-Supervised learning for Tabular Domain
Sajad Darabi
Shayan Fazeli
Ali Pazoki
S. Sankararaman
Majid Sarrafzadeh
SSL
38
29
0
27 Aug 2021
Shifts: A Dataset of Real Distributional Shift Across Multiple
  Large-Scale Tasks
Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks
A. Malinin
Neil Band
Ganshin
Alexander
German Chesnokov
...
Roginskiy
Denis
Mariya Shmatova
Panos Tigas
Boris Yangel
UQCV
OOD
73
131
0
15 Jul 2021
SCARF: Self-Supervised Contrastive Learning using Random Feature
  Corruption
SCARF: Self-Supervised Contrastive Learning using Random Feature Corruption
Dara Bahri
Heinrich Jiang
Yi Tay
Donald Metzler
SSL
54
173
0
29 Jun 2021
Revisiting Deep Learning Models for Tabular Data
Revisiting Deep Learning Models for Tabular Data
Yu. V. Gorishniy
Ivan Rubachev
Valentin Khrulkov
Artem Babenko
LMTD
96
720
0
22 Jun 2021
Well-tuned Simple Nets Excel on Tabular Datasets
Well-tuned Simple Nets Excel on Tabular Datasets
Arlind Kadra
Marius Lindauer
Frank Hutter
Josif Grabocka
38
193
0
21 Jun 2021
Tabular Data: Deep Learning is Not All You Need
Tabular Data: Deep Learning is Not All You Need
Ravid Shwartz-Ziv
Amitai Armon
LMTD
139
1,256
0
06 Jun 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output
  Pairs in Deep Learning
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
Jannik Kossen
Neil Band
Clare Lyle
Aidan Gomez
Tom Rainforth
Y. Gal
OOD
3DPC
80
139
0
04 Jun 2021
SAINT: Improved Neural Networks for Tabular Data via Row Attention and
  Contrastive Pre-Training
SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training
Gowthami Somepalli
Micah Goldblum
Avi Schwarzschild
C. Bayan Bruss
Tom Goldstein
LMTD
82
324
0
02 Jun 2021
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
TabTransformer: Tabular Data Modeling Using Contextual Embeddings
Xin Huang
A. Khetan
Milan Cvitkovic
Zohar Karnin
ViT
LMTD
195
447
0
11 Dec 2020
Supervised Contrastive Learning
Supervised Contrastive Learning
Prannay Khosla
Piotr Teterwak
Chen Wang
Aaron Sarna
Yonglong Tian
Phillip Isola
Aaron Maschinot
Ce Liu
Dilip Krishnan
SSL
139
4,532
0
23 Apr 2020
Gradient Boosting Neural Networks: GrowNet
Gradient Boosting Neural Networks: GrowNet
Sarkhan Badirli
Xuanqing Liu
Zhengming Xing
Avradeep Bhowmik
Khoa D. Doan
S. Keerthi
FedML
54
84
0
19 Feb 2020
The Tree Ensemble Layer: Differentiability meets Conditional Computation
The Tree Ensemble Layer: Differentiability meets Conditional Computation
Hussein Hazimeh
Natalia Ponomareva
P. Mol
Zhenyu Tan
Rahul Mazumder
UQCV
AI4CE
302
79
0
18 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
325
18,721
0
13 Feb 2020
Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning
Kaiming He
Haoqi Fan
Yuxin Wu
Saining Xie
Ross B. Girshick
SSL
165
12,065
0
13 Nov 2019
Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data
Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data
Sergei Popov
S. Morozov
Artem Babenko
LMTD
132
310
0
13 Sep 2019
TabNet: Attentive Interpretable Tabular Learning
TabNet: Attentive Interpretable Tabular Learning
Sercan O. Arik
Tomas Pfister
LMTD
149
1,343
0
20 Aug 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
527
5,769
0
25 Jul 2019
AutoInt: Automatic Feature Interaction Learning via Self-Attentive
  Neural Networks
AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
Weiping Song
Chence Shi
Zhiping Xiao
Zhijian Duan
Yewen Xu
Ming Zhang
Jian Tang
CML
60
854
0
29 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.5K
94,511
0
11 Oct 2018
Deep & Cross Network for Ad Click Predictions
Deep & Cross Network for Ad Click Predictions
Ruoxi Wang
Bin Fu
Gang Fu
Mingliang Wang
77
1,230
0
17 Aug 2017
Self-Normalizing Neural Networks
Self-Normalizing Neural Networks
Günter Klambauer
Thomas Unterthiner
Andreas Mayr
Sepp Hochreiter
380
2,507
0
08 Jun 2017
XGBoost: A Scalable Tree Boosting System
XGBoost: A Scalable Tree Boosting System
Tianqi Chen
Carlos Guestrin
613
38,735
0
09 Mar 2016
OpenML: networked science in machine learning
OpenML: networked science in machine learning
Joaquin Vanschoren
Jan N. van Rijn
B. Bischl
Luís Torgo
FedML
AI4CE
139
1,321
0
29 Jul 2014
1