Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2207.02542
Cited By
Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems
6 July 2022
Manuela Brenner
Florian Hess
Jonas M. Mikhaeil
Leonard Bereska
Zahra Monfared
Po-Chen Kuo
Daniel Durstewitz
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Tractable Dendritic RNNs for Reconstructing Nonlinear Dynamical Systems"
44 / 44 papers shown
Title
Learning Interpretable Hierarchical Dynamical Systems Models from Time Series Data
Manuel Brenner
Elias Weber
G. Koppe
Daniel Durstewitz
AI4TS
AI4CE
109
8
0
07 Oct 2024
Zero-shot forecasting of chaotic systems
Yuanzhao Zhang
William Gilpin
AI4TS
249
8
0
24 Sep 2024
Inferring stochastic low-rank recurrent neural networks from neural data
Matthijs Pals
A Erdem Sağtekin
Felix Pei
Manuel Gloeckler
Jakob H Macke
549
7
0
24 Jun 2024
Neural Delay Differential Equations: System Reconstruction and Image Classification
Qunxi Zhu
Yao Guo
Wei Lin
71
33
0
11 Apr 2023
Discovering Governing Equations from Partial Measurements with Deep Delay Autoencoders
Joseph Bakarji
Kathleen P. Champion
J. Nathan Kutz
Steven L. Brunton
109
86
0
13 Jan 2022
Long Expressive Memory for Sequence Modeling
T. Konstantin Rusch
Siddhartha Mishra
N. Benjamin Erichson
Michael W. Mahoney
AI4TS
244
46
0
10 Oct 2021
Neural ODE Processes
Alexander Norcliffe
Cristian Bodnar
Ben Day
Jacob Moss
Pietro Lio
BDL
AI4TS
88
65
0
23 Mar 2021
Mind the Gap when Conditioning Amortised Inference in Sequential Latent-Variable Models
Justin Bayer
Maximilian Soelch
Atanas Mirchev
Baris Kayalibay
Patrick van der Smagt
102
15
0
18 Jan 2021
Augmenting Physical Models with Deep Networks for Complex Dynamics Forecasting
Yuan Yin
Vincent Le Guen
Jérémie Donà
Emmanuel de Bézenac
Ibrahim Ayed
Nicolas Thome
Patrick Gallinari
AI4CE
PINN
90
135
0
09 Oct 2020
Coupled Oscillatory Recurrent Neural Network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies
T. Konstantin Rusch
Siddhartha Mishra
117
94
0
02 Oct 2020
Dynamical Variational Autoencoders: A Comprehensive Review
Laurent Girin
Simon Leglaive
Xiaoyu Bie
Julien Diard
Thomas Hueber
Xavier Alameda-Pineda
BDL
119
219
0
28 Aug 2020
Augmenting Neural Differential Equations to Model Unknown Dynamical Systems with Incomplete State Information
Robert Strauss
46
3
0
19 Aug 2020
Tensorized Transformer for Dynamical Systems Modeling
Anna Shalova
Ivan Oseledets
AI4CE
55
8
0
05 Jun 2020
Forecasting Sequential Data using Consistent Koopman Autoencoders
Omri Azencot
N. Benjamin Erichson
Vanessa Lin
Michael W. Mahoney
AI4TS
AI4CE
192
152
0
04 Mar 2020
Deep Representation Learning for Dynamical Systems Modeling
Anna Shalova
Ivan Oseledets
AI4CE
70
6
0
10 Feb 2020
Rodent: Relevance determination in differential equations
Niklas Heim
Václav vSmídl
Tomávs Pevný
49
5
0
02 Dec 2019
Symplectic Recurrent Neural Networks
Zhengdao Chen
Jianyu Zhang
Martín Arjovsky
Léon Bottou
209
225
0
29 Sep 2019
Universality and individuality in neural dynamics across large populations of recurrent networks
Niru Maheswaranathan
Alex H. Williams
Matthew D. Golub
Surya Ganguli
David Sussillo
84
145
0
19 Jul 2019
Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics
Niru Maheswaranathan
Alex H. Williams
Matthew D. Golub
Surya Ganguli
David Sussillo
81
82
0
25 Jun 2019
Hamiltonian Neural Networks
S. Greydanus
Misko Dzamba
J. Yosinski
PINN
AI4CE
133
899
0
04 Jun 2019
AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks
B. Chang
Minmin Chen
E. Haber
Ed H. Chi
PINN
GNN
117
207
0
26 Feb 2019
Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI
G. Koppe
Hazem Toutounji
P. Kirsch
S. Lis
Daniel Durstewitz
MedIm
68
79
0
19 Feb 2019
Neural Ordinary Differential Equations
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
AI4CE
457
5,176
0
19 Jun 2018
Data-Driven Forecasting of High-Dimensional Chaotic Systems with Long Short-Term Memory Networks
Pantelis R. Vlachas
Wonmin Byeon
Z. Y. Wan
T. Sapsis
Petros Koumoutsakos
AI4TS
97
475
0
21 Feb 2018
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
M. Raissi
PINN
AI4CE
128
757
0
20 Jan 2018
Multistep Neural Networks for Data-driven Discovery of Nonlinear Dynamical Systems
M. Raissi
P. Perdikaris
George Karniadakis
PINN
153
266
0
04 Jan 2018
State Space LSTM Models with Particle MCMC Inference
Xun Zheng
Manzil Zaheer
Amr Ahmed
Yansen Wang
Eric Xing
Alex Smola
BDL
78
46
0
30 Nov 2017
Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems
Enoch Yeung
Soumya Kundu
Nathan Oken Hodas
AI4CE
85
387
0
22 Aug 2017
A State Space Approach for Piecewise-Linear Recurrent Neural Networks for Reconstructing Nonlinear Dynamics from Neural Measurements
Daniel Durstewitz
230
56
0
23 Dec 2016
Structured Inference Networks for Nonlinear State Space Models
Rahul G. Krishnan
Uri Shalit
David Sontag
BDL
98
459
0
30 Sep 2016
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
437
10,548
0
21 Jul 2016
Sequential Neural Models with Stochastic Layers
Marco Fraccaro
Søren Kaae Sønderby
Ulrich Paquet
Ole Winther
BDL
129
398
0
24 May 2016
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl
Maximilian Sölch
Justin Bayer
Patrick van der Smagt
BDL
59
375
0
20 May 2016
Multi-Scale Convolutional Neural Networks for Time Series Classification
Zhicheng Cui
Wenlin Chen
Yixin Chen
68
565
0
22 Mar 2016
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
313
4,817
0
04 Jan 2016
Synthesis of recurrent neural networks for dynamical system simulation
Adam Trischler
G. D’Eleuterio
AI4CE
71
82
0
17 Dec 2015
Black box variational inference for state space models
Evan Archer
Il Memming Park
Lars Buesing
John P. Cunningham
Liam Paninski
BDL
83
161
0
23 Nov 2015
Improving performance of recurrent neural network with relu nonlinearity
S. Talathi
Aniket A. Vartak
ODL
81
88
0
12 Nov 2015
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
322
4,198
0
21 May 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
179
2,824
0
20 Feb 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,433
0
22 Dec 2014
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
486
16,922
0
20 Dec 2013
Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
Andrew M. Saxe
James L. McClelland
Surya Ganguli
ODL
200
1,852
0
20 Dec 2013
On the difficulty of training Recurrent Neural Networks
Razvan Pascanu
Tomas Mikolov
Yoshua Bengio
ODL
218
5,361
0
21 Nov 2012
1