ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2002.05111
70
6

Deep Representation Learning for Dynamical Systems Modeling

10 February 2020
Anna Shalova
Ivan Oseledets
    AI4CE
ArXiv (abs)PDFHTML
Abstract

Proper states' representations are the key to the successful dynamics modeling of chaotic systems. Inspired by recent advances of deep representations in various areas such as natural language processing and computer vision, we propose the adaptation of the state-of-art Transformer model in application to the dynamical systems modeling. The model demonstrates promising results in trajectories generation as well as in the general attractors' characteristics approximation, including states' distribution and Lyapunov exponent.

View on arXiv
Comments on this paper