ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.14882
  4. Cited By
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood

LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood

29 June 2022
Piotr Tempczyk
Rafał Michaluk
Łukasz Garncarek
Przemysław Spurek
Jacek Tabor
Adam Goliñski
ArXivPDFHTML

Papers citing "LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood"

26 / 26 papers shown
Title
A Geometric Framework for Understanding Memorization in Generative Models
A Geometric Framework for Understanding Memorization in Generative Models
Brendan Leigh Ross
Hamidreza Kamkari
Tongzi Wu
Rasa Hosseinzadeh
Zhaoyan Liu
George Stein
Jesse C. Cresswell
Gabriel Loaiza-Ganem
78
7
0
31 Oct 2024
Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows
Score-based Pullback Riemannian Geometry: Extracting the Data Manifold Geometry using Anisotropic Flows
Willem Diepeveen
Georgios Batzolis
Zakhar Shumaylov
Carola-Bibiane Schönlieb
DiffM
43
2
0
02 Oct 2024
Intrinsic Dimensionality Estimation within Tight Localities: A
  Theoretical and Experimental Analysis
Intrinsic Dimensionality Estimation within Tight Localities: A Theoretical and Experimental Analysis
Laurent Amsaleg
Oussama Chelly
Michael E. Houle
Ken-ichi Kawarabayashi
Miloš Radovanović
Weeris Treeratanajaru
51
50
0
29 Sep 2022
Scikit-dimension: a Python package for intrinsic dimension estimation
Scikit-dimension: a Python package for intrinsic dimension estimation
Jonathan Bac
Evgeny M. Mirkes
Alexander N. Gorban
I. Tyukin
A. Zinovyev
61
82
0
06 Sep 2021
Tractable Density Estimation on Learned Manifolds with Conformal
  Embedding Flows
Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows
Brendan Leigh Ross
Jesse C. Cresswell
TPM
47
32
0
09 Jun 2021
Rectangular Flows for Manifold Learning
Rectangular Flows for Manifold Learning
Anthony L. Caterini
Gabriel Loaiza-Ganem
Geoff Pleiss
John P. Cunningham
DRL
43
44
0
02 Jun 2021
The Intrinsic Dimension of Images and Its Impact on Learning
The Intrinsic Dimension of Images and Its Impact on Learning
Phillip E. Pope
Chen Zhu
Ahmed Abdelkader
Micah Goldblum
Tom Goldstein
219
264
0
18 Apr 2021
Maximum Likelihood Training of Score-Based Diffusion Models
Maximum Likelihood Training of Score-Based Diffusion Models
Yang Song
Conor Durkan
Iain Murray
Stefano Ermon
DiffM
92
642
0
22 Jan 2021
Flows for simultaneous manifold learning and density estimation
Flows for simultaneous manifold learning and density estimation
Johann Brehmer
Kyle Cranmer
DRL
AI4CE
65
157
0
31 Mar 2020
Neural Spline Flows
Neural Spline Flows
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
98
761
0
10 Jun 2019
Intrinsic dimension of data representations in deep neural networks
Intrinsic dimension of data representations in deep neural networks
A. Ansuini
Alessandro Laio
Jakob H. Macke
D. Zoccolan
AI4CE
41
269
0
29 May 2019
Estimating the effective dimension of large biological datasets using
  Fisher separability analysis
Estimating the effective dimension of large biological datasets using Fisher separability analysis
L. Albergante
Jonathan Bac
A. Zinovyev
57
38
0
18 Jan 2019
Unsupervised representation learning using convolutional and stacked
  auto-encoders: a domain and cross-domain feature space analysis
Unsupervised representation learning using convolutional and stacked auto-encoders: a domain and cross-domain feature space analysis
G. B. Cavallari
Leo Sampaio Ferraz Ribeiro
M. Ponti
SSL
OOD
DRL
16
29
0
01 Nov 2018
Glow: Generative Flow with Invertible 1x1 Convolutions
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma
Prafulla Dhariwal
BDL
DRL
199
3,110
0
09 Jul 2018
Measuring the Intrinsic Dimension of Objective Landscapes
Measuring the Intrinsic Dimension of Objective Landscapes
Chunyuan Li
Heerad Farkhoor
Rosanne Liu
J. Yosinski
61
407
0
24 Apr 2018
Estimating the intrinsic dimension of datasets by a minimal neighborhood
  information
Estimating the intrinsic dimension of datasets by a minimal neighborhood information
Elena Facco
M. d’Errico
Alex Rodriguez
Alessandro Laio
21
320
0
19 Mar 2018
On the Latent Space of Wasserstein Auto-Encoders
On the Latent Space of Wasserstein Auto-Encoders
Paul Kishan Rubenstein
Bernhard Schölkopf
Ilya O. Tolstikhin
DRL
25
52
0
11 Feb 2018
Wasserstein Auto-Encoders
Wasserstein Auto-Encoders
Ilya O. Tolstikhin
Olivier Bousquet
Sylvain Gelly
B. Schölkopf
DRL
99
1,049
0
05 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
127
8,807
0
25 Aug 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
124
1,340
0
19 May 2017
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRL
BDL
243
4,143
0
21 May 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
207
8,351
0
28 Nov 2014
NICE: Non-linear Independent Components Estimation
NICE: Non-linear Independent Components Estimation
Laurent Dinh
David M. Krueger
Yoshua Bengio
DRL
BDL
91
2,246
0
30 Oct 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
344
16,972
0
20 Dec 2013
Testing the Manifold Hypothesis
Testing the Manifold Hypothesis
Charles Fefferman
S. Mitter
Hariharan Narayanan
76
523
0
01 Oct 2013
Popular Ensemble Methods: An Empirical Study
Popular Ensemble Methods: An Empirical Study
R. Maclin
D. Opitz
107
2,965
0
01 Jun 2011
1