ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07697
  4. Cited By
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields

MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields

15 June 2022
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
ArXivPDFHTML

Papers citing "MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields"

16 / 66 papers shown
Title
SO(2)-Equivariant Downwash Models for Close Proximity Flight
SO(2)-Equivariant Downwash Models for Close Proximity Flight
Henry Smith
Ajay Shankar
Jennifer Gielis
J. Blumenkamp
A. Prorok
29
7
0
30 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
34
55
0
28 Apr 2023
Scaling the leading accuracy of deep equivariant models to biomolecular
  simulations of realistic size
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
32
48
0
20 Apr 2023
A new perspective on building efficient and expressive 3D equivariant
  graph neural networks
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
32
33
0
07 Apr 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
34
79
0
07 Feb 2023
Complete Neural Networks for Complete Euclidean Graphs
Complete Neural Networks for Complete Euclidean Graphs
Snir Hordan
Tal Amir
S. Gortler
Nadav Dym
3DPC
29
5
0
31 Jan 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
39
27
0
26 Jan 2023
Capturing long-range interaction with reciprocal space neural network
Capturing long-range interaction with reciprocal space neural network
Hongyu Yu
Liangliang Hong
Shiyou Chen
X. Gong
Hongjun Xiang
29
11
0
30 Nov 2022
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
29
2
0
14 Nov 2022
Structure-based drug design with geometric deep learning
Structure-based drug design with geometric deep learning
Clemens Isert
Kenneth Atz
G. Schneider
53
104
0
19 Oct 2022
Hierarchical Learning in Euclidean Neural Networks
Hierarchical Learning in Euclidean Neural Networks
Joshua A. Rackers
P. Rao
30
1
0
10 Oct 2022
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
41
64
0
09 Oct 2022
SPICE, A Dataset of Drug-like Molecules and Peptides for Training
  Machine Learning Potentials
SPICE, A Dataset of Drug-like Molecules and Peptides for Training Machine Learning Potentials
Peter K. Eastman
P. Behara
David L. Dotson
Raimondas Galvelis
John E. Herr
...
J. Chodera
Benjamin P. Pritchard
Yuanqing Wang
Gianni De Fabritiis
T. Markland
34
105
0
21 Sep 2022
A smooth basis for atomistic machine learning
A smooth basis for atomistic machine learning
Filippo Bigi
Kevin K. Huguenin-Dumittan
Michele Ceriotti
D. Manolopoulos
22
6
0
05 Sep 2022
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,106
0
27 Apr 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
206
1,240
0
08 Jan 2021
Previous
12