ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.07697
  4. Cited By
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields

MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields

15 June 2022
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
ArXivPDFHTML

Papers citing "MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields"

50 / 65 papers shown
Title
Representing spherical tensors with scalar-based machine-learning models
Representing spherical tensors with scalar-based machine-learning models
Michelangelo Domina
Filippo Bigi
Paolo Pegolo
Michele Ceriotti
45
0
0
08 May 2025
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Yasir Ghunaim
Andrés Villa
Gergo Ignacz
Gyorgy Szekely
Motasem Alfarra
Bernard Ghanem
AI4CE
90
0
0
28 Apr 2025
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
Aaron J. Havens
Benjamin Kurt Miller
Bing Yan
Carles Domingo-Enrich
Anuroop Sriram
...
Brandon Amos
Brian Karrer
Xiang Fu
Guan-Horng Liu
Ricky T. Q. Chen
DiffM
50
0
0
16 Apr 2025
Machine learning interatomic potential can infer electrical response
Machine learning interatomic potential can infer electrical response
Peichen Zhong
Dongjin Kim
Daniel S. King
Bingqing Cheng
32
1
0
07 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
Optimal Invariant Bases for Atomistic Machine Learning
Optimal Invariant Bases for Atomistic Machine Learning
Alice Allen
Emily Shinkle
Roxana Bujack
Nicholas Lubbers
37
0
0
30 Mar 2025
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Yunyang Li
Zaishuo Xia
Lin Huang
Xinran Wei
Han Yang
...
Zun Wang
Chang-Shu Liu
Jia Zhang
Bin Shao
Mark B. Gerstein
77
0
0
26 Feb 2025
Learning local equivariant representations for quantum operators
Learning local equivariant representations for quantum operators
Zhanghao Zhouyin
Zixi Gan
MingKang Liu
S. K. Pandey
Linfeng Zhang
Qiangqiang Gu
80
3
0
28 Jan 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
33
0
0
10 Jan 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
50
0
0
30 Dec 2024
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
The dark side of the forces: assessing non-conservative force models for atomistic machine learning
Filippo Bigi
Marcel F. Langer
Michele Ceriotti
AI4CE
91
7
0
16 Dec 2024
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
NeuralDEM -- Real-time Simulation of Industrial Particulate Flows
Benedikt Alkin
Tobias Kronlachner
Samuele Papa
Stefan Pirker
Thomas Lichtenegger
Johannes Brandstetter
PINN
AI4CE
52
1
1
14 Nov 2024
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
Artem Maevskiy
Alexandra Carvalho
Emil Sataev
Volha Turchyna
Keian Noori
Aleksandr Rodin
A. H. Castro Neto
Andrey E. Ustyuzhanin
37
0
0
11 Nov 2024
Neural Network Matrix Product Operator: A Multi-Dimensionally Integrable Machine Learning Potential
Neural Network Matrix Product Operator: A Multi-Dimensionally Integrable Machine Learning Potential
Kentaro Hino
Yuki Kurashige
34
0
0
31 Oct 2024
Relaxed Equivariance via Multitask Learning
Relaxed Equivariance via Multitask Learning
Ahmed A. A. Elhag
T. Konstantin Rusch
Francesco Di Giovanni
Michael Bronstein
47
2
0
23 Oct 2024
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Open Materials 2024 (OMat24) Inorganic Materials Dataset and Models
Luis Barroso-Luque
Muhammed Shuaibi
Xiang Fu
Brandon M. Wood
Misko Dzamba
Meng Gao
Ammar Rizvi
C. L. Zitnick
Zachary W. Ulissi
AI4CE
PINN
38
16
0
16 Oct 2024
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Junjie Xu
Artem Moskalev
Tommaso Mansi
Mangal Prakash
Rui Liao
AI4CE
26
1
0
15 Oct 2024
Learning Equivariant Non-Local Electron Density Functionals
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
28
1
0
10 Oct 2024
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Lie Algebra Canonicalization: Equivariant Neural Operators under arbitrary Lie Groups
Zakhar Shumaylov
Peter Zaika
James Rowbottom
Ferdia Sherry
Melanie Weber
Carola-Bibiane Schönlieb
41
1
0
03 Oct 2024
Deep Signature: Characterization of Large-Scale Molecular Dynamics
Deep Signature: Characterization of Large-Scale Molecular Dynamics
Tiexin Qin
Mengxu Zhu
Chunyang Li
Terry Lyons
Hong Yan
Haoliang Li
28
0
0
03 Oct 2024
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
60
0
0
23 Jul 2024
PlayMolecule pKAce: Small Molecule Protonation through Equivariant
  Neural Networks
PlayMolecule pKAce: Small Molecule Protonation through Equivariant Neural Networks
Nikolai Schapin
Maciej Majewski
Mariona Torrens-Fontanals
Gianni de Fabritiis
19
1
0
15 Jul 2024
On the Expressive Power of Sparse Geometric MPNNs
On the Expressive Power of Sparse Geometric MPNNs
Yonatan Sverdlov
Nadav Dym
42
1
0
02 Jul 2024
Evaluating representation learning on the protein structure universe
Evaluating representation learning on the protein structure universe
Arian R. Jamasb
Alex Morehead
Chaitanya K. Joshi
Zuobai Zhang
Kieran Didi
...
Charles Harris
Jian Tang
Jianlin Cheng
Pietro Lio
Tom L. Blundell
SSL
40
12
0
19 Jun 2024
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
Grounding Continuous Representations in Geometry: Equivariant Neural Fields
David R. Wessels
David M. Knigge
Samuele Papa
Riccardo Valperga
Sharvaree P. Vadgama
E. Gavves
Erik J. Bekkers
47
7
0
09 Jun 2024
Neural Thermodynamic Integration: Free Energies from Energy-based
  Diffusion Models
Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
Bálint Máté
François Fleuret
Tristan Bereau
DiffM
40
2
0
04 Jun 2024
A Recipe for Charge Density Prediction
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
50
5
0
29 May 2024
E(n) Equivariant Topological Neural Networks
E(n) Equivariant Topological Neural Networks
Claudio Battiloro
Ege Karaismailoglu
Mauricio Tec
George Dasoulas
Michelle Audirac
Francesca Dominici
52
5
0
24 May 2024
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
AdsorbDiff: Adsorbate Placement via Conditional Denoising Diffusion
Adeesh Kolluru
John R. Kitchin
DiffM
42
4
0
07 May 2024
Grappa -- A Machine Learned Molecular Mechanics Force Field
Grappa -- A Machine Learned Molecular Mechanics Force Field
Leif Seute
Eric Hartmann
Jan Stühmer
Frauke Gräter
29
3
0
25 Mar 2024
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications
Jiaqi Han
Jiacheng Cen
Liming Wu
Zongzhao Li
Xiangzhe Kong
...
Zhewei Wei
Deli Zhao
Yu Rong
Wenbing Huang
Wenbing Huang
AI4CE
34
20
0
01 Mar 2024
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Universal Physics Transformers: A Framework For Efficiently Scaling Neural Operators
Benedikt Alkin
Andreas Fürst
Simon Schmid
Lukas Gruber
Markus Holzleitner
Johannes Brandstetter
PINN
AI4CE
45
8
0
19 Feb 2024
On the Completeness of Invariant Geometric Deep Learning Models
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li
Xiyuan Wang
Shijia Kang
Muhan Zhang
33
2
0
07 Feb 2024
Reducing the Cost of Quantum Chemical Data By Backpropagating Through
  Density Functional Theory
Reducing the Cost of Quantum Chemical Data By Backpropagating Through Density Functional Theory
Alexander Mathiasen
Hatem Helal
Paul Balanca
Adam Krzywaniak
Ali Parviz
Frederik Hvilshoj
Bla.zej Banaszewski
Carlo Luschi
Andrew William Fitzgibbon
40
3
0
06 Feb 2024
Equivariant Symmetry Breaking Sets
Equivariant Symmetry Breaking Sets
YuQing Xie
Tess E. Smidt
25
4
0
05 Feb 2024
Molecular Hypergraph Neural Networks
Molecular Hypergraph Neural Networks
Junwu Chen
Philippe Schwaller
GNN
41
10
0
20 Dec 2023
Machine-Learned Atomic Cluster Expansion Potentials for Fast and
  Quantum-Accurate Thermal Simulations of Wurtzite AlN
Machine-Learned Atomic Cluster Expansion Potentials for Fast and Quantum-Accurate Thermal Simulations of Wurtzite AlN
Guang Yang
Yuan-Bin Liu
Lei Yang
Bingyang Cao
AI4CE
30
6
0
20 Nov 2023
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
A Geometric Insight into Equivariant Message Passing Neural Networks on
  Riemannian Manifolds
A Geometric Insight into Equivariant Message Passing Neural Networks on Riemannian Manifolds
Ilyes Batatia
20
0
0
16 Oct 2023
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials
Peter K. Eastman
Raimondas Galvelis
Raúl P. Peláez
C. Abreu
Stephen E. Farr
...
Yuanqing Wang
Ivy Zhang
J. Chodera
Gianni de Fabritiis
T. Markland
AI4CE
VLM
28
37
0
04 Oct 2023
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields
  for Atomistic Simulations
EGraFFBench: Evaluation of Equivariant Graph Neural Network Force Fields for Atomistic Simulations
Vaibhav Bihani
Utkarsh Pratiush
Sajid Mannan
Tao Du
Zhimin Chen
Santiago Miret
Matthieu Micoulaut
M. Smedskjaer
Sayan Ranu
N. M. A. Krishnan
24
19
0
03 Oct 2023
Uncovering Neural Scaling Laws in Molecular Representation Learning
Uncovering Neural Scaling Laws in Molecular Representation Learning
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
32
16
0
15 Sep 2023
Matbench Discovery -- A framework to evaluate machine learning crystal
  stability predictions
Matbench Discovery -- A framework to evaluate machine learning crystal stability predictions
Janosh Riebesell
Rhys E. A. Goodall
Philipp Benner
Chiang Yuan
Bowen Deng
A. Lee
Anubhav Jain
Kristin A. Persson
OOD
30
35
0
28 Aug 2023
Beyond MD17: the reactive xxMD dataset
Beyond MD17: the reactive xxMD dataset
Zihan Pengmei
Junyu Liu
Yinan Shu
21
6
0
22 Aug 2023
SE(3) Equivariant Augmented Coupling Flows
SE(3) Equivariant Augmented Coupling Flows
Laurence I. Midgley
Vincent Stimper
Javier Antorán
Emile Mathieu
Bernhard Schölkopf
José Miguel Hernández-Lobato
35
22
0
20 Aug 2023
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
  Wavefunctions
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
33
5
0
15 Jul 2023
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive
  Models
MoleCLUEs: Molecular Conformers Maximally In-Distribution for Predictive Models
Michael R. Maser
Natasa Tagasovska
Jae Hyeon Lee
Andrew Watkins
31
0
0
20 Jun 2023
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules
Haiyang Yu
Meng Liu
Youzhi Luo
A. Strasser
X. Qian
Xiaoning Qian
Shuiwang Ji
15
20
0
15 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction
  Learning
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
22
13
0
02 Jun 2023
SO(2)-Equivariant Downwash Models for Close Proximity Flight
SO(2)-Equivariant Downwash Models for Close Proximity Flight
Henry Smith
Ajay Shankar
Jennifer Gielis
J. Blumenkamp
A. Prorok
29
7
0
30 May 2023
12
Next