Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2206.01496
Cited By
Causality Learning With Wasserstein Generative Adversarial Networks
3 June 2022
H. Petkov
Colin Hanley
Feng Dong
CML
GAN
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Causality Learning With Wasserstein Generative Adversarial Networks"
14 / 14 papers shown
Title
InfoVAEGAN : learning joint interpretable representations by information maximization and maximum likelihood
Fei Ye
A. Bors
GAN
DRL
40
15
0
09 Jul 2021
Stabilizing Generative Adversarial Networks: A Survey
Maciej Wiatrak
Stefano V. Albrecht
A. Nystrom
GAN
90
87
0
30 Sep 2019
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDL
CML
64
276
0
05 Jun 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDL
CML
GNN
82
490
0
22 Apr 2019
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
99
447
0
07 Jun 2017
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
194
632
0
01 Jun 2017
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CML
BDL
213
749
0
24 May 2017
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
179
4,829
0
26 Jan 2017
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
161
4,238
0
12 Jun 2016
Autoencoding beyond pixels using a learned similarity metric
Anders Boesen Lindbo Larsen
Søren Kaae Sønderby
Hugo Larochelle
Ole Winther
GAN
183
2,075
0
31 Dec 2015
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
220
4,289
0
04 Jun 2013
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
David Heckerman
D. Geiger
D. M. Chickering
TPM
119
3,984
0
27 Feb 2013
Causal Inference in the Presence of Latent Variables and Selection Bias
Peter Spirtes
Christopher Meek
Thomas S. Richardson
CML
201
447
0
20 Feb 2013
Large-Sample Learning of Bayesian Networks is NP-Hard
D. M. Chickering
Christopher Meek
David Heckerman
BDL
132
796
0
19 Oct 2012
1