ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2206.01496
  4. Cited By
Causality Learning With Wasserstein Generative Adversarial Networks

Causality Learning With Wasserstein Generative Adversarial Networks

3 June 2022
H. Petkov
Colin Hanley
Feng Dong
    CMLGANOOD
ArXiv (abs)PDFHTML

Papers citing "Causality Learning With Wasserstein Generative Adversarial Networks"

14 / 14 papers shown
Title
InfoVAEGAN : learning joint interpretable representations by information
  maximization and maximum likelihood
InfoVAEGAN : learning joint interpretable representations by information maximization and maximum likelihood
Fei Ye
A. Bors
GANDRL
40
15
0
09 Jul 2021
Stabilizing Generative Adversarial Networks: A Survey
Stabilizing Generative Adversarial Networks: A Survey
Maciej Wiatrak
Stefano V. Albrecht
A. Nystrom
GAN
90
87
0
30 Sep 2019
Gradient-Based Neural DAG Learning
Gradient-Based Neural DAG Learning
Sébastien Lachapelle
P. Brouillard
T. Deleu
Simon Lacoste-Julien
BDLCML
64
276
0
05 Jun 2019
DAG-GNN: DAG Structure Learning with Graph Neural Networks
DAG-GNN: DAG Structure Learning with Graph Neural Networks
Yue Yu
Jie Chen
Tian Gao
Mo Yu
BDLCMLGNN
82
490
0
22 Apr 2019
InfoVAE: Information Maximizing Variational Autoencoders
InfoVAE: Information Maximizing Variational Autoencoders
Shengjia Zhao
Jiaming Song
Stefano Ermon
DRL
99
447
0
07 Jun 2017
Learning Generative Models with Sinkhorn Divergences
Learning Generative Models with Sinkhorn Divergences
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
194
632
0
01 Jun 2017
Causal Effect Inference with Deep Latent-Variable Models
Causal Effect Inference with Deep Latent-Variable Models
Christos Louizos
Uri Shalit
Joris Mooij
David Sontag
R. Zemel
Max Welling
CMLBDL
213
749
0
24 May 2017
Wasserstein GAN
Wasserstein GAN
Martín Arjovsky
Soumith Chintala
Léon Bottou
GAN
179
4,829
0
26 Jan 2017
InfoGAN: Interpretable Representation Learning by Information Maximizing
  Generative Adversarial Nets
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
161
4,238
0
12 Jun 2016
Autoencoding beyond pixels using a learned similarity metric
Autoencoding beyond pixels using a learned similarity metric
Anders Boesen Lindbo Larsen
Søren Kaae Sønderby
Hugo Larochelle
Ole Winther
GAN
183
2,075
0
31 Dec 2015
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
220
4,289
0
04 Jun 2013
Learning Bayesian Networks: The Combination of Knowledge and Statistical
  Data
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
David Heckerman
D. Geiger
D. M. Chickering
TPM
119
3,984
0
27 Feb 2013
Causal Inference in the Presence of Latent Variables and Selection Bias
Causal Inference in the Presence of Latent Variables and Selection Bias
Peter Spirtes
Christopher Meek
Thomas S. Richardson
CML
201
447
0
20 Feb 2013
Large-Sample Learning of Bayesian Networks is NP-Hard
Large-Sample Learning of Bayesian Networks is NP-Hard
D. M. Chickering
Christopher Meek
David Heckerman
BDL
132
796
0
19 Oct 2012
1