Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2205.03884
Cited By
Decentralized Stochastic Optimization with Inherent Privacy Protection
8 May 2022
Yongqiang Wang
H. Vincent Poor
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Decentralized Stochastic Optimization with Inherent Privacy Protection"
25 / 25 papers shown
Title
Gradient Purification: Defense Against Poisoning Attack in Decentralized Federated Learning
Bin Li
Xiaoye Miao
Yongheng Shang
Xinkui Zhao
AAML
79
0
0
08 Jan 2025
Tailoring Gradient Methods for Differentially-Private Distributed Optimization
Yongqiang Wang
A. Nedić
50
71
0
02 Feb 2022
Algorithm-Level Confidentiality for Average Consensus on Time-Varying Directed Graphs
Huan Gao
Yongqiang Wang
FedML
26
16
0
02 Jan 2022
Communication-Efficient Distributed Deep Learning: A Comprehensive Survey
Zhenheng Tang
Shaoshuai Shi
Wei Wang
Yue Liu
Xiaowen Chu
54
49
0
10 Mar 2020
Deep Leakage from Gradients
Ligeng Zhu
Zhijian Liu
Song Han
FedML
94
2,204
0
21 Jun 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
142
481
0
28 May 2019
Differentially Private Model Publishing for Deep Learning
Lei Yu
Ling Liu
C. Pu
Mehmet Emre Gursoy
Stacey Truex
FedML
61
265
0
03 Apr 2019
Privacy-Preserving Average Consensus via State Decomposition
Yongqiang Wang
32
172
0
25 Feb 2019
Decentralized Stochastic Optimization and Gossip Algorithms with Compressed Communication
Anastasia Koloskova
Sebastian U. Stich
Martin Jaggi
FedML
79
510
0
01 Feb 2019
Efficient Deep Learning on Multi-Source Private Data
Nicholas Hynes
Raymond Cheng
D. Song
FedML
59
102
0
17 Jul 2018
Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramèr
Dan Boneh
FedML
171
397
0
08 Jun 2018
Distributed Stochastic Gradient Tracking Methods
Shi Pu
A. Nedić
64
291
0
25 May 2018
Exploiting Unintended Feature Leakage in Collaborative Learning
Luca Melis
Congzheng Song
Emiliano De Cristofaro
Vitaly Shmatikov
FedML
142
1,474
0
10 May 2018
Secure and Privacy-Preserving Consensus
Minghao Ruan
Huan Gao
Yongqiang Wang
FedML
53
237
0
12 Jul 2017
Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent
Xiangru Lian
Ce Zhang
Huan Zhang
Cho-Jui Hsieh
Wei Zhang
Ji Liu
50
1,227
0
25 May 2017
Non-convex learning via Stochastic Gradient Langevin Dynamics: a nonasymptotic analysis
Maxim Raginsky
Alexander Rakhlin
Matus Telgarsky
70
521
0
13 Feb 2017
Geometrically Convergent Distributed Optimization with Uncoordinated Step-Sizes
A. Nedić
Alexander Olshevsky
Wei Shi
César A. Uribe
55
140
0
19 Sep 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
203
6,121
0
01 Jul 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
236
3,208
0
15 Jun 2016
Privacy Preservation in Distributed Subgradient Optimization Algorithms
Youcheng Lou
Lean Yu
Shouyang Wang
21
76
0
30 Dec 2015
Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization
Amir Daneshmand
F. Facchinei
Vyacheslav Kungurtsev
G. Scutari
64
60
0
16 Jul 2014
Differentially Private Distributed Optimization
Zhenqi Huang
Sayan Mitra
Nitin H. Vaidya
FedML
62
265
0
12 Jan 2014
Convergence of a Multi-Agent Projected Stochastic Gradient Algorithm for Non-Convex Optimization
Pascal Bianchi
J. Jakubowicz
103
255
0
13 Jul 2011
Distributed Autonomous Online Learning: Regrets and Intrinsic Privacy-Preserving Properties
Feng Yan
S. Sundaram
S. V. N. Vishwanathan
Y. Qi
89
269
0
21 Jun 2010
Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri
C. Monteleoni
Anand D. Sarwate
126
1,487
0
01 Dec 2009
1