ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.4504
32
60

Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization

16 July 2014
Amir Daneshmand
F. Facchinei
Vyacheslav Kungurtsev
G. Scutari
ArXivPDFHTML
Abstract

We propose a decomposition framework for the parallel optimization of the sum of a differentiable {(possibly nonconvex)} function and a nonsmooth (possibly nonseparable), convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. The main contribution of this work is a novel \emph{parallel, hybrid random/deterministic} decomposition scheme wherein, at each iteration, a subset of (block) variables is updated at the same time by minimizing local convex approximations of the original nonconvex function. To tackle with huge-scale problems, the (block) variables to be updated are chosen according to a \emph{mixed random and deterministic} procedure, which captures the advantages of both pure deterministic and random update-based schemes. Almost sure convergence of the proposed scheme is established. Numerical results show that on huge-scale problems the proposed hybrid random/deterministic algorithm outperforms both random and deterministic schemes.

View on arXiv
Comments on this paper