ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.05877
10
140

Geometrically Convergent Distributed Optimization with Uncoordinated Step-Sizes

19 September 2016
A. Nedić
Alexander Olshevsky
Wei Shi
César A. Uribe
ArXivPDFHTML
Abstract

A recent algorithmic family for distributed optimization, DIGing's, have been shown to have geometric convergence over time-varying undirected/directed graphs. Nevertheless, an identical step-size for all agents is needed. In this paper, we study the convergence rates of the Adapt-Then-Combine (ATC) variation of the DIGing algorithm under uncoordinated step-sizes. We show that the ATC variation of DIGing algorithm converges geometrically fast even if the step-sizes are different among the agents. In addition, our analysis implies that the ATC structure can accelerate convergence compared to the distributed gradient descent (DGD) structure which has been used in the original DIGing algorithm.

View on arXiv
Comments on this paper