Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2204.07172
Cited By
v1
v2
v3
v4 (latest)
Diagnosing and Fixing Manifold Overfitting in Deep Generative Models
14 April 2022
Gabriel Loaiza-Ganem
Brendan Leigh Ross
Jesse C. Cresswell
M. Volkovs
GAN
DRL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Diagnosing and Fixing Manifold Overfitting in Deep Generative Models"
21 / 21 papers shown
Title
Learning geometry and topology via multi-chart flows
Hanlin Yu
Søren Hauberg
Marcelo Hartmann
Arto Klami
Georgios Arvanitidis
AI4CE
49
0
0
30 May 2025
Improving the Euclidean Diffusion Generation of Manifold Data by Mitigating Score Function Singularity
Ziqiang Liu
Wei Zhang
Tiejun Li
DiffM
77
0
0
15 May 2025
Demystifying Diffusion Policies: Action Memorization and Simple Lookup Table Alternatives
Chengyang He
Xu Liu
Gadiel Sznaier Camps
Guillaume Sartoretti
Mac Schwager
80
1
0
09 May 2025
A Geometric Framework for Understanding Memorization in Generative Models
Brendan Leigh Ross
Hamidreza Kamkari
Tongzi Wu
Rasa Hosseinzadeh
Zhaoyan Liu
George Stein
Jesse C. Cresswell
Gabriel Loaiza-Ganem
154
9
0
31 Oct 2024
Manifolds, Random Matrices and Spectral Gaps: The geometric phases of generative diffusion
Enrico Ventura
Beatrice Achilli
Gianluigi Silvestri
Carlo Lucibello
L. Ambrogioni
DiffM
135
10
0
08 Oct 2024
Resultant: Incremental Effectiveness on Likelihood for Unsupervised Out-of-Distribution Detection
Yewen Li
Chaojie Wang
Xiaobo Xia
Xu He
Ruyi An
Dong Li
Tongliang Liu
Bo An
Xinrun Wang
OODD
88
0
0
05 Sep 2024
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models
Hamidreza Kamkari
Brendan Leigh Ross
Rasa Hosseinzadeh
Jesse C. Cresswell
Gabriel Loaiza-Ganem
DiffM
106
16
0
05 Jun 2024
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Kacper Kapusniak
Peter Potaptchik
Teodora Reu
Leo Zhang
Alexander Tong
Michael M. Bronstein
A. Bose
Francesco Di Giovanni
89
22
0
23 May 2024
A Geometric Explanation of the Likelihood OOD Detection Paradox
Hamidreza Kamkari
Brendan Leigh Ross
Jesse C. Cresswell
M. Volkovs
Rahul G. Krishnan
Gabriel Loaiza-Ganem
OODD
101
12
0
27 Mar 2024
MINDE: Mutual Information Neural Diffusion Estimation
Giulio Franzese
Mustapha Bounoua
Pietro Michiardi
DiffM
80
8
0
13 Oct 2023
Graph-level Representation Learning with Joint-Embedding Predictive Architectures
Geri Skenderi
Hang Li
Jiliang Tang
Marco Cristani
AI4TS
GNN
159
5
0
27 Sep 2023
Multi-modal Latent Diffusion
Mustapha Bounoua
Giulio Franzese
Pietro Michiardi
DiffM
98
13
0
07 Jun 2023
One-Line-of-Code Data Mollification Improves Optimization of Likelihood-based Generative Models
Ba-Hien Tran
Giulio Franzese
Pietro Michiardi
Maurizio Filippone
DiffM
134
4
0
30 May 2023
TR0N: Translator Networks for 0-Shot Plug-and-Play Conditional Generation
Zhaoyan Liu
Noël Vouitsis
S. Gorti
Jimmy Ba
Gabriel Loaiza-Ganem
ViT
75
1
0
26 Apr 2023
Diffusion Model-Augmented Behavioral Cloning
Shangcheng Chen
Hsiang-Chun Wang
Ming-Hao Hsu
Chun-Mao Lai
Shao-Hua Sun
DiffM
153
31
0
26 Feb 2023
Denoising Deep Generative Models
Gabriel Loaiza-Ganem
Brendan Leigh Ross
Luhuan Wu
John P. Cunningham
Jesse C. Cresswell
M. Volkovs
DiffM
106
5
0
30 Nov 2022
CaloMan: Fast generation of calorimeter showers with density estimation on learned manifolds
Jesse C. Cresswell
Brendan Leigh Ross
Gabriel Loaiza-Ganem
H. Reyes-González
Marco Letizia
M. Volkovs
86
38
0
23 Nov 2022
Verifying the Union of Manifolds Hypothesis for Image Data
Bradley Brown
M. Volkovs
Brendan Leigh Ross
Jesse C. Cresswell
Gabriel Loaiza-Ganem
139
43
0
06 Jul 2022
Neural Implicit Manifold Learning for Topology-Aware Density Estimation
Brendan Leigh Ross
Gabriel Loaiza-Ganem
M. Volkovs
Jesse C. Cresswell
AI4CE
77
3
0
22 Jun 2022
Deterministic training of generative autoencoders using invertible layers
Gianluigi Silvestri
Daan Roos
L. Ambrogioni
TPM
79
2
0
19 May 2022
Spread Flows for Manifold Modelling
Mingtian Zhang
Yitong Sun
Chen Zhang
Jingyu Sun
AI4CE
63
2
0
29 Sep 2021
1