ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.09440
  4. Cited By
TO-Scene: A Large-scale Dataset for Understanding 3D Tabletop Scenes

TO-Scene: A Large-scale Dataset for Understanding 3D Tabletop Scenes

17 March 2022
Mutian Xu
P. Chen
Haolin Liu
Xiaoguang Han
    3DPC
    LM&Ro
ArXivPDFHTML

Papers citing "TO-Scene: A Large-scale Dataset for Understanding 3D Tabletop Scenes"

4 / 4 papers shown
Title
EFEM: Equivariant Neural Field Expectation Maximization for 3D Object
  Segmentation Without Scene Supervision
EFEM: Equivariant Neural Field Expectation Maximization for 3D Object Segmentation Without Scene Supervision
Jiahui Lei
Congyue Deng
Karl Schmeckpeper
Leonidas J. Guibas
Kostas Daniilidis
3DPC
24
21
0
27 Mar 2023
ABO: Dataset and Benchmarks for Real-World 3D Object Understanding
ABO: Dataset and Benchmarks for Real-World 3D Object Understanding
Jasmine Collins
Shubham Goel
Kenan Deng
Achleshwar Luthra
Leon L. Xu
...
T. F. Y. Vicente
T. Dideriksen
H. Arora
M. Guillaumin
Jitendra Malik
154
217
0
12 Oct 2021
Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild
  with Pose Annotations
Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations
Adel Ahmadyan
Liangkai Zhang
Jianing Wei
Artsiom Ablavatski
Matthias Grundmann
3DPC
148
174
0
18 Dec 2020
PointNet: Deep Learning on Point Sets for 3D Classification and
  Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,103
0
02 Dec 2016
1