ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.06717
  4. Cited By
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs

Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs

13 March 2022
Xiaohan Ding
Xinming Zhang
Yi Zhou
Jungong Han
Guiguang Ding
Jian Sun
    VLM
ArXivPDFHTML

Papers citing "Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs"

50 / 115 papers shown
Title
ResRep: Lossless CNN Pruning via Decoupling Remembering and Forgetting
ResRep: Lossless CNN Pruning via Decoupling Remembering and Forgetting
Xiaohan Ding
Tianxiang Hao
Jianchao Tan
Ji Liu
Jungong Han
Yuchen Guo
Guiguang Ding
39
163
0
07 Jul 2020
ResNeSt: Split-Attention Networks
ResNeSt: Split-Attention Networks
Hang Zhang
Chongruo Wu
Zhongyue Zhang
Yi Zhu
Yanghua Peng
...
Tong He
Jonas W. Mueller
R. Manmatha
Mu Li
Alex Smola
84
1,471
0
19 Apr 2020
Understanding the Difficulty of Training Transformers
Understanding the Difficulty of Training Transformers
Liyuan Liu
Xiaodong Liu
Jianfeng Gao
Weizhu Chen
Jiawei Han
AI4CE
49
251
0
17 Apr 2020
Designing Network Design Spaces
Designing Network Design Spaces
Ilija Radosavovic
Raj Prateek Kosaraju
Ross B. Girshick
Kaiming He
Piotr Dollár
GNN
88
1,672
0
30 Mar 2020
Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
Axial-DeepLab: Stand-Alone Axial-Attention for Panoptic Segmentation
Huiyu Wang
Yukun Zhu
Bradley Green
Hartwig Adam
Alan Yuille
Liang-Chieh Chen
3DPC
106
669
0
17 Mar 2020
On Translation Invariance in CNNs: Convolutional Layers can Exploit
  Absolute Spatial Location
On Translation Invariance in CNNs: Convolutional Layers can Exploit Absolute Spatial Location
O. Kayhan
Jan van Gemert
286
234
0
16 Mar 2020
On the Relationship between Self-Attention and Convolutional Layers
On the Relationship between Self-Attention and Convolutional Layers
Jean-Baptiste Cordonnier
Andreas Loukas
Martin Jaggi
99
530
0
08 Nov 2019
RandAugment: Practical automated data augmentation with a reduced search
  space
RandAugment: Practical automated data augmentation with a reduced search space
E. D. Cubuk
Barret Zoph
Jonathon Shlens
Quoc V. Le
MQ
198
3,458
0
30 Sep 2019
Deep High-Resolution Representation Learning for Visual Recognition
Deep High-Resolution Representation Learning for Visual Recognition
Jingdong Wang
Ke Sun
Tianheng Cheng
Borui Jiang
Chaorui Deng
...
Yadong Mu
Mingkui Tan
Xinggang Wang
Wenyu Liu
Bin Xiao
339
3,572
0
20 Aug 2019
ACNet: Strengthening the Kernel Skeletons for Powerful CNN via
  Asymmetric Convolution Blocks
ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks
Xiaohan Ding
Yuchen Guo
Guiguang Ding
Jiawei Han
61
666
0
11 Aug 2019
Cascade R-CNN: High Quality Object Detection and Instance Segmentation
Cascade R-CNN: High Quality Object Detection and Instance Segmentation
Zhaowei Cai
Nuno Vasconcelos
ObjD
77
1,339
0
24 Jun 2019
MMDetection: Open MMLab Detection Toolbox and Benchmark
MMDetection: Open MMLab Detection Toolbox and Benchmark
Kai-xiang Chen
Jiaqi Wang
Jiangmiao Pang
Yuhang Cao
Yu Xiong
...
Jingdong Wang
Jianping Shi
Wanli Ouyang
Chen Change Loy
Dahua Lin
VOS
128
2,845
0
17 Jun 2019
Stand-Alone Self-Attention in Vision Models
Stand-Alone Self-Attention in Vision Models
Prajit Ramachandran
Niki Parmar
Ashish Vaswani
Irwan Bello
Anselm Levskaya
Jonathon Shlens
VLM
SLR
ViT
75
1,208
0
13 Jun 2019
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DV
MedIm
127
17,950
0
28 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
592
4,735
0
13 May 2019
Searching for MobileNetV3
Searching for MobileNetV3
Andrew G. Howard
Mark Sandler
Grace Chu
Liang-Chieh Chen
Bo Chen
...
Yukun Zhu
Ruoming Pang
Vijay Vasudevan
Quoc V. Le
Hartwig Adam
300
6,685
0
06 May 2019
Local Relation Networks for Image Recognition
Local Relation Networks for Image Recognition
Han Hu
Zheng Zhang
Zhenda Xie
Stephen Lin
FAtt
65
499
0
25 Apr 2019
Attention Augmented Convolutional Networks
Attention Augmented Convolutional Networks
Irwan Bello
Barret Zoph
Ashish Vaswani
Jonathon Shlens
Quoc V. Le
132
1,008
0
22 Apr 2019
An Empirical Study of Spatial Attention Mechanisms in Deep Networks
An Empirical Study of Spatial Attention Mechanisms in Deep Networks
Xizhou Zhu
Dazhi Cheng
Zheng Zhang
Stephen Lin
Jifeng Dai
69
409
0
11 Apr 2019
FCOS: Fully Convolutional One-Stage Object Detection
FCOS: Fully Convolutional One-Stage Object Detection
Zhi Tian
Chunhua Shen
Hao Chen
Tong He
ObjD
112
4,969
0
02 Apr 2019
Single Path One-Shot Neural Architecture Search with Uniform Sampling
Single Path One-Shot Neural Architecture Search with Uniform Sampling
Zichao Guo
Xiangyu Zhang
Haoyuan Mu
Wen Heng
Zechun Liu
Yichen Wei
Jian Sun
59
933
0
31 Mar 2019
Approximating CNNs with Bag-of-local-Features models works surprisingly
  well on ImageNet
Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet
Wieland Brendel
Matthias Bethge
SSL
FAtt
76
561
0
20 Mar 2019
Pay Less Attention with Lightweight and Dynamic Convolutions
Pay Less Attention with Lightweight and Dynamic Convolutions
Felix Wu
Angela Fan
Alexei Baevski
Yann N. Dauphin
Michael Auli
70
606
0
29 Jan 2019
Hybrid Task Cascade for Instance Segmentation
Hybrid Task Cascade for Instance Segmentation
Kai-xiang Chen
Jiangmiao Pang
Jiaqi Wang
Yu Xiong
Xiaoxiao Li
...
Ziwei Liu
Jianping Shi
Wanli Ouyang
Chen Change Loy
Dahua Lin
ISeg
123
1,298
0
22 Jan 2019
ImageNet-trained CNNs are biased towards texture; increasing shape bias
  improves accuracy and robustness
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
94
2,647
0
29 Nov 2018
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture
  Design
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
Ningning Ma
Xiangyu Zhang
Haitao Zheng
Jian Sun
145
4,957
0
30 Jul 2018
Unified Perceptual Parsing for Scene Understanding
Unified Perceptual Parsing for Scene Understanding
Tete Xiao
Yingcheng Liu
Bolei Zhou
Yuning Jiang
Jian Sun
OCL
VOS
144
1,859
0
26 Jul 2018
DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search
Hanxiao Liu
Karen Simonyan
Yiming Yang
183
4,326
0
24 Jun 2018
Self-Attention with Relative Position Representations
Self-Attention with Relative Position Representations
Peter Shaw
Jakob Uszkoreit
Ashish Vaswani
140
2,269
0
06 Mar 2018
Encoder-Decoder with Atrous Separable Convolution for Semantic Image
  Segmentation
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Liang-Chieh Chen
Yukun Zhu
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
246
13,051
0
07 Feb 2018
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV2: Inverted Residuals and Linear Bottlenecks
Mark Sandler
Andrew G. Howard
Menglong Zhu
A. Zhmoginov
Liang-Chieh Chen
167
19,124
0
13 Jan 2018
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
258
9,687
0
25 Oct 2017
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
364
26,241
0
05 Sep 2017
Random Erasing Data Augmentation
Random Erasing Data Augmentation
Zhun Zhong
Liang Zheng
Guoliang Kang
Shaozi Li
Yi Yang
90
3,614
0
16 Aug 2017
ShuffleNet: An Extremely Efficient Convolutional Neural Network for
  Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
Xiangyu Zhang
Xinyu Zhou
Mengxiao Lin
Jian Sun
AI4TS
130
6,830
0
04 Jul 2017
Rethinking Atrous Convolution for Semantic Image Segmentation
Rethinking Atrous Convolution for Semantic Image Segmentation
Liang-Chieh Chen
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
185
8,425
0
17 Jun 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
526
129,831
0
12 Jun 2017
Dilated Residual Networks
Dilated Residual Networks
Feng Yu
V. Koltun
Thomas Funkhouser
MedIm
117
1,617
0
28 May 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,747
0
17 Apr 2017
Soft-NMS -- Improving Object Detection With One Line of Code
Soft-NMS -- Improving Object Detection With One Line of Code
Navaneeth Bodla
Bharat Singh
Rama Chellappa
L. Davis
ObjD
67
1,778
0
14 Apr 2017
Mask R-CNN
Mask R-CNN
Kaiming He
Georgia Gkioxari
Piotr Dollár
Ross B. Girshick
ObjD
314
27,018
0
20 Mar 2017
Deformable Convolutional Networks
Deformable Convolutional Networks
Jifeng Dai
Haozhi Qi
Yuwen Xiong
Yi Li
Guodong Zhang
Han Hu
Yichen Wei
190
5,291
0
17 Mar 2017
Large Kernel Matters -- Improve Semantic Segmentation by Global
  Convolutional Network
Large Kernel Matters -- Improve Semantic Segmentation by Global Convolutional Network
Chao Peng
Xiangyu Zhang
Gang Yu
G. Luo
Jian Sun
VLM
SSeg
96
1,485
0
08 Mar 2017
Understanding Convolution for Semantic Segmentation
Understanding Convolution for Semantic Segmentation
Panqu Wang
Pengfei Chen
Ye Yuan
Ding Liu
Zehua Huang
Xiaodi Hou
G. Cottrell
SSeg
65
1,682
0
27 Feb 2017
Understanding the Effective Receptive Field in Deep Convolutional Neural
  Networks
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks
Wenjie Luo
Yujia Li
R. Urtasun
R. Zemel
HAI
79
1,789
0
15 Jan 2017
Aggregated Residual Transformations for Deep Neural Networks
Aggregated Residual Transformations for Deep Neural Networks
Saining Xie
Ross B. Girshick
Piotr Dollár
Zhuowen Tu
Kaiming He
463
10,281
0
16 Nov 2016
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
408
5,362
0
05 Nov 2016
Xception: Deep Learning with Depthwise Separable Convolutions
Xception: Deep Learning with Depthwise Separable Convolutions
François Chollet
MDE
BDL
PINN
1.0K
14,493
0
07 Oct 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
687
36,599
0
25 Aug 2016
Semantic Understanding of Scenes through the ADE20K Dataset
Semantic Understanding of Scenes through the ADE20K Dataset
Bolei Zhou
Hang Zhao
Xavier Puig
Tete Xiao
Sanja Fidler
Adela Barriuso
Antonio Torralba
SSeg
354
1,850
0
18 Aug 2016
Previous
123
Next