ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2203.06717
  4. Cited By
Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs

Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs

13 March 2022
Xiaohan Ding
Xinming Zhang
Yi Zhou
Jungong Han
Guiguang Ding
Jian Sun
    VLM
ArXivPDFHTML

Papers citing "Scaling Up Your Kernels to 31x31: Revisiting Large Kernel Design in CNNs"

15 / 115 papers shown
Title
Layer Normalization
Layer Normalization
Jimmy Lei Ba
J. Kiros
Geoffrey E. Hinton
314
10,412
0
21 Jul 2016
Gaussian Error Linear Units (GELUs)
Gaussian Error Linear Units (GELUs)
Dan Hendrycks
Kevin Gimpel
163
4,958
0
27 Jun 2016
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,
  Atrous Convolution, and Fully Connected CRFs
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
Liang-Chieh Chen
George Papandreou
Iasonas Kokkinos
Kevin Patrick Murphy
Alan Yuille
SSeg
207
18,136
0
02 Jun 2016
Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
Evan Shelhamer
Jonathan Long
Trevor Darrell
VOS
SSeg
440
37,704
0
20 May 2016
The Cityscapes Dataset for Semantic Urban Scene Understanding
The Cityscapes Dataset for Semantic Urban Scene Understanding
Marius Cordts
Mohamed Omran
Sebastian Ramos
Timo Rehfeld
Markus Enzweiler
Rodrigo Benenson
Uwe Franke
Stefan Roth
Bernt Schiele
826
11,540
0
06 Apr 2016
Deep Networks with Stochastic Depth
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
172
2,344
0
30 Mar 2016
Inception-v4, Inception-ResNet and the Impact of Residual Connections on
  Learning
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
Christian Szegedy
Sergey Ioffe
Vincent Vanhoucke
Alexander A. Alemi
332
14,196
0
23 Feb 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.6K
192,638
0
10 Dec 2015
Rethinking the Inception Architecture for Computer Vision
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
611
27,231
0
02 Dec 2015
Multi-Scale Context Aggregation by Dilated Convolutions
Multi-Scale Context Aggregation by Dilated Convolutions
Feng Yu
V. Koltun
SSeg
233
8,421
0
23 Nov 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
391
43,154
0
11 Feb 2015
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
371
43,511
0
17 Sep 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.2K
99,991
0
04 Sep 2014
Microsoft COCO: Common Objects in Context
Microsoft COCO: Common Objects in Context
Nayeon Lee
Michael Maire
Serge J. Belongie
Lubomir Bourdev
Ross B. Girshick
James Hays
Pietro Perona
Deva Ramanan
C. L. Zitnick
Piotr Dollár
ObjD
342
43,290
0
01 May 2014
Fast Training of Convolutional Networks through FFTs
Fast Training of Convolutional Networks through FFTs
Michaël Mathieu
Mikael Henaff
Yann LeCun
110
608
0
20 Dec 2013
Previous
123