ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.13295
  4. Cited By
Efficient Attribute Unlearning: Towards Selective Removal of Input
  Attributes from Feature Representations

Efficient Attribute Unlearning: Towards Selective Removal of Input Attributes from Feature Representations

27 February 2022
Tao Guo
Song Guo
Jiewei Zhang
Wenchao Xu
Junxiao Wang
    MU
ArXivPDFHTML

Papers citing "Efficient Attribute Unlearning: Towards Selective Removal of Input Attributes from Feature Representations"

35 / 35 papers shown
Title
The Right to be Forgotten in Federated Learning: An Efficient
  Realization with Rapid Retraining
The Right to be Forgotten in Federated Learning: An Efficient Realization with Rapid Retraining
Yi Liu
Lei Xu
Lizhen Qu
Cong Wang
Bo Li
MU
49
146
0
14 Mar 2022
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
251
30,108
0
01 Mar 2022
Recommendation Unlearning
Recommendation Unlearning
C. L. Philip Chen
Fei Sun
Hao Fei
Bolin Ding
MU
74
90
0
18 Jan 2022
Anatomizing Bias in Facial Analysis
Anatomizing Bias in Facial Analysis
Richa Singh
P. Majumdar
S. Mittal
Mayank Vatsa
CVBM
63
24
0
13 Dec 2021
Visualizing the Emergence of Intermediate Visual Patterns in DNNs
Visualizing the Emergence of Intermediate Visual Patterns in DNNs
Mingjie Li
Shaobo Wang
Quanshi Zhang
69
11
0
05 Nov 2021
Federated Unlearning via Class-Discriminative Pruning
Federated Unlearning via Class-Discriminative Pruning
Junxiao Wang
Song Guo
Xin Xie
Heng Qi
MU
35
142
0
22 Oct 2021
Adaptive Machine Unlearning
Adaptive Machine Unlearning
Varun Gupta
Christopher Jung
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
Chris Waites
MU
55
182
0
08 Jun 2021
Remember What You Want to Forget: Algorithms for Machine Unlearning
Remember What You Want to Forget: Algorithms for Machine Unlearning
Ayush Sekhari
Jayadev Acharya
Gautam Kamath
A. Suresh
FedML
MU
74
306
0
04 Mar 2021
Revisiting Locally Supervised Learning: an Alternative to End-to-end
  Training
Revisiting Locally Supervised Learning: an Alternative to End-to-end Training
Yulin Wang
Zanlin Ni
Shiji Song
Le Yang
Gao Huang
63
84
0
26 Jan 2021
Unlearnable Examples: Making Personal Data Unexploitable
Unlearnable Examples: Making Personal Data Unexploitable
Hanxun Huang
Xingjun Ma
S. Erfani
James Bailey
Yisen Wang
MIACV
215
193
0
13 Jan 2021
Parallel Training of Deep Networks with Local Updates
Parallel Training of Deep Networks with Local Updates
Michael Laskin
Luke Metz
Seth Nabarrao
Mark Saroufim
Badreddine Noune
Carlo Luschi
Jascha Narain Sohl-Dickstein
Pieter Abbeel
FedML
97
27
0
07 Dec 2020
Fair Attribute Classification through Latent Space De-biasing
Fair Attribute Classification through Latent Space De-biasing
V. V. Ramaswamy
Sunnie S. Y. Kim
Olga Russakovsky
57
164
0
02 Dec 2020
When Machine Learning Meets Privacy: A Survey and Outlook
When Machine Learning Meets Privacy: A Survey and Outlook
B. Liu
Ming Ding
Sina shaham
W. Rahayu
F. Farokhi
Zihuai Lin
60
287
0
24 Nov 2020
Amnesiac Machine Learning
Amnesiac Machine Learning
Laura Graves
Vineel Nagisetty
Vijay Ganesh
MU
MIACV
69
266
0
21 Oct 2020
Machine Unlearning for Random Forests
Machine Unlearning for Random Forests
Jonathan Brophy
Daniel Lowd
MU
55
161
0
11 Sep 2020
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
Descent-to-Delete: Gradient-Based Methods for Machine Unlearning
Seth Neel
Aaron Roth
Saeed Sharifi-Malvajerdi
MU
52
271
0
06 Jul 2020
Interpreting and Disentangling Feature Components of Various Complexity
  from DNNs
Interpreting and Disentangling Feature Components of Various Complexity from DNNs
Jie Ren
Mingjie Li
Zexu Liu
Quanshi Zhang
CoGe
43
18
0
29 Jun 2020
DeltaGrad: Rapid retraining of machine learning models
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Yan Sun
S. Davidson
MU
48
199
0
26 Jun 2020
What Makes for Good Views for Contrastive Learning?
What Makes for Good Views for Contrastive Learning?
Yonglong Tian
Chen Sun
Ben Poole
Dilip Krishnan
Cordelia Schmid
Phillip Isola
SSL
90
1,327
0
20 May 2020
Supervised Contrastive Learning
Supervised Contrastive Learning
Prannay Khosla
Piotr Teterwak
Chen Wang
Aaron Sarna
Yonglong Tian
Phillip Isola
Aaron Maschinot
Ce Liu
Dilip Krishnan
SSL
141
4,537
0
23 Apr 2020
Approximate Data Deletion from Machine Learning Models
Approximate Data Deletion from Machine Learning Models
Zachary Izzo
Mary Anne Smart
Kamalika Chaudhuri
James Zou
MU
54
262
0
24 Feb 2020
A Simple Framework for Contrastive Learning of Visual Representations
A Simple Framework for Contrastive Learning of Visual Representations
Ting-Li Chen
Simon Kornblith
Mohammad Norouzi
Geoffrey E. Hinton
SSL
345
18,739
0
13 Feb 2020
Machine Unlearning
Machine Unlearning
Lucas Bourtoule
Varun Chandrasekaran
Christopher A. Choquette-Choo
Hengrui Jia
Adelin Travers
Baiwu Zhang
David Lie
Nicolas Papernot
MU
112
864
0
09 Dec 2019
Towards Fairness in Visual Recognition: Effective Strategies for Bias
  Mitigation
Towards Fairness in Visual Recognition: Effective Strategies for Bias Mitigation
Zeyu Wang
Klint Qinami
Yannis Karakozis
Kyle Genova
P. Nair
Kenji Hata
Olga Russakovsky
60
362
0
26 Nov 2019
Making AI Forget You: Data Deletion in Machine Learning
Making AI Forget You: Data Deletion in Machine Learning
Antonio A. Ginart
M. Guan
Gregory Valiant
James Zou
MU
72
477
0
11 Jul 2019
Federated Machine Learning: Concept and Applications
Federated Machine Learning: Concept and Applications
Qiang Yang
Yang Liu
Tianjian Chen
Yongxin Tong
FedML
70
2,311
0
13 Feb 2019
Split learning for health: Distributed deep learning without sharing raw
  patient data
Split learning for health: Distributed deep learning without sharing raw patient data
Praneeth Vepakomma
O. Gupta
Tristan Swedish
Ramesh Raskar
FedML
118
706
0
03 Dec 2018
Learning deep representations by mutual information estimation and
  maximization
Learning deep representations by mutual information estimation and maximization
R. Devon Hjelm
A. Fedorov
Samuel Lavoie-Marchildon
Karan Grewal
Phil Bachman
Adam Trischler
Yoshua Bengio
SSL
DRL
312
2,662
0
20 Aug 2018
Decoupled Parallel Backpropagation with Convergence Guarantee
Decoupled Parallel Backpropagation with Convergence Guarantee
Zhouyuan Huo
Bin Gu
Qian Yang
Heng-Chiao Huang
62
97
0
27 Apr 2018
Towards the Science of Security and Privacy in Machine Learning
Towards the Science of Security and Privacy in Machine Learning
Nicolas Papernot
Patrick McDaniel
Arunesh Sinha
Michael P. Wellman
AAML
77
474
0
11 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
272
19,981
0
07 Oct 2016
Decoupled Neural Interfaces using Synthetic Gradients
Decoupled Neural Interfaces using Synthetic Gradients
Max Jaderberg
Wojciech M. Czarnecki
Simon Osindero
Oriol Vinyals
Alex Graves
David Silver
Koray Kavukcuoglu
75
356
0
18 Aug 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
193,814
0
10 Dec 2015
Adversarial Autoencoders
Adversarial Autoencoders
Alireza Makhzani
Jonathon Shlens
Navdeep Jaitly
Ian Goodfellow
Brendan J. Frey
GAN
86
2,223
0
18 Nov 2015
Deep Learning Face Attributes in the Wild
Deep Learning Face Attributes in the Wild
Ziwei Liu
Ping Luo
Xiaogang Wang
Xiaoou Tang
CVBM
232
8,401
0
28 Nov 2014
1