Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2202.11821
Cited By
Physics-informed neural networks for inverse problems in supersonic flows
23 February 2022
Ameya Dilip Jagtap
Zhiping Mao
Nikolaus Adams
George Karniadakis
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Physics-informed neural networks for inverse problems in supersonic flows"
48 / 48 papers shown
Title
A general physics-constrained method for the modelling of equation's closure terms with sparse data
Tian Chen
Shengping Liu
Li Liu
Heng Yong
PINN
AI4CE
46
0
0
30 Apr 2025
Physics-informed KAN PointNet: Deep learning for simultaneous solutions to inverse problems in incompressible flow on numerous irregular geometries
Ali Kashefi
T. Mukerji
3DPC
PINN
52
0
0
08 Apr 2025
Challenges and Advancements in Modeling Shock Fronts with Physics-Informed Neural Networks: A Review and Benchmarking Study
J. Abbasi
Ameya D. Jagtap
Ben Moseley
Aksel Hiorth
P. Andersen
PINN
AI4CE
52
1
0
14 Mar 2025
PIED: Physics-Informed Experimental Design for Inverse Problems
Apivich Hemachandra
Gregory Kang Ruey Lau
Szu Hui Ng
Bryan Kian Hsiang Low
PINN
48
0
0
10 Mar 2025
Optimization Landscapes Learned: Proxy Networks Boost Convergence in Physics-based Inverse Problems
Girnar Goyal
Philipp Holl
Sweta Agrawal
Nils Thuerey
AI4CE
48
0
0
27 Jan 2025
A Digital twin for Diesel Engines: Operator-infused PINNs with Transfer Learning for Engine Health Monitoring
Kamaljyoti Nath
Varun V. Kumar
Daniel J. Smith
George Karniadakis
79
0
0
16 Dec 2024
Robust Weight Initialization for Tanh Neural Networks with Fixed Point Analysis
Hyunwoo Lee
Hayoung Choi
Hyunju Kim
39
1
0
03 Oct 2024
Adapting Physics-Informed Neural Networks for Bifurcation Detection in Ecological Migration Models
Lujie Yin
Xing Lv
PINN
23
0
0
01 Sep 2024
Neural networks for bifurcation and linear stability analysis of steady states in partial differential equations
M. L. Shahab
Hadi Susanto
27
2
0
29 Jul 2024
Unveiling the optimization process of Physics Informed Neural Networks: How accurate and competitive can PINNs be?
Jorge F. Urbán
P. Stefanou
José A. Pons
PINN
45
6
0
07 May 2024
Taper-based scattering formulation of the Helmholtz equation to improve the training process of Physics-Informed Neural Networks
W. Dörfler
Mehdi Elasmi
Tim Laufer
33
0
0
15 Apr 2024
PINNACLE: PINN Adaptive ColLocation and Experimental points selection
Gregory Kang Ruey Lau
Apivich Hemachandra
See-Kiong Ng
K. H. Low
3DPC
37
18
0
11 Apr 2024
A Physics-driven GraphSAGE Method for Physical Process Simulations Described by Partial Differential Equations
Hang Hu
Sidi Wu
Guoxiong Cai
Na Liu
18
1
0
13 Mar 2024
JAX-SPH: A Differentiable Smoothed Particle Hydrodynamics Framework
Artur P. Toshev
Harish D. Ramachandran
Jonas A. Erbesdobler
Gianluca Galletti
Johannes Brandstetter
Nikolaus A. Adams
46
7
0
07 Mar 2024
JAX-Fluids 2.0: Towards HPC for Differentiable CFD of Compressible Two-phase Flows
Deniz A. Bezgin
Aaron B. Buhendwa
Nikolaus A. Adams
15
9
0
07 Feb 2024
Preconditioning for Physics-Informed Neural Networks
Songming Liu
Chang Su
J. Yao
Zhongkai Hao
Hang Su
Youjia Wu
Jun Zhu
AI4CE
PINN
44
5
0
01 Feb 2024
Physically Informed Synchronic-adaptive Learning for Industrial Systems Modeling in Heterogeneous Media with Unavailable Time-varying Interface
Aina Wang
Pan Qin
Xi-Ming Sun
PINN
AI4CE
26
0
0
26 Jan 2024
RiemannONets: Interpretable Neural Operators for Riemann Problems
Ahmad Peyvan
Vivek Oommen
Ameya Dilip Jagtap
George Karniadakis
AI4CE
41
22
0
16 Jan 2024
Two-Stage Surrogate Modeling for Data-Driven Design Optimization with Application to Composite Microstructure Generation
Farhad Pourkamali-Anaraki
Jamal F. Husseini
E. Pineda
B. Bednarcyk
Scott E. Stapleton
AI4CE
44
2
0
04 Jan 2024
Physics-informed neural network for modeling dynamic linear elasticity
Vijay Kag
Venkatesh Gopinath
PINN
9
1
0
23 Dec 2023
Personalized Predictions of Glioblastoma Infiltration: Mathematical Models, Physics-Informed Neural Networks and Multimodal Scans
Ray Zirui Zhang
Ivan Ezhov
Michal Balcerak
Andy Zhu
Benedikt Wiestler
Bjoern H. Menze
John S. Lowengrub
AI4CE
52
6
0
28 Nov 2023
Physics-informed neural network for acoustic resonance analysis in a one-dimensional acoustic tube
Kazuya Yokota
Takahiko Kurahashi
Masajiro Abe
16
5
0
18 Oct 2023
Learning characteristic parameters and dynamics of centrifugal pumps under multi-phase flow using physics-informed neural networks
Felipe de Castro Teixeira Carvalho
Kamaljyoti Nath
A. Serpa
George Karniadakis
18
4
0
04 Oct 2023
Data-driven localized waves and parameter discovery in the massive Thirring model via extended physics-informed neural networks with interface zones
Christian Berger
Sadok Ben Toumia
Zijian Zhou
Zhenya Yan
PINN
28
8
0
29 Sep 2023
Deep smoothness WENO scheme for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Tatiana Kossaczká
Ameya Dilip Jagtap
Matthias Ehrhardt
23
1
0
18 Sep 2023
Approximating High-Dimensional Minimal Surfaces with Physics-Informed Neural Networks
Steven Zhou
Xiaojing Ye
PINN
11
0
0
05 Sep 2023
A Domain-adaptive Physics-informed Neural Network for Inverse Problems of Maxwell's Equations in Heterogeneous Media
Shiyuan Piao
Hong Gu
Aina Wang
Pan Qin
PINN
21
2
0
12 Aug 2023
Introducing Hybrid Modeling with Time-series-Transformers: A Comparative Study of Series and Parallel Approach in Batch Crystallization
Niranjan Sitapure
J. Kwon
35
33
0
25 Jul 2023
PI-VEGAN: Physics Informed Variational Embedding Generative Adversarial Networks for Stochastic Differential Equations
R. Gao
Yufeng Wang
Min Yang
Chuanjun Chen
GAN
34
2
0
21 Jul 2023
A Deep Learning Framework for Solving Hyperbolic Partial Differential Equations: Part I
Rajat Arora
PINN
AI4CE
27
1
0
09 Jul 2023
Parameter Identification for Partial Differential Equations with Spatiotemporal Varying Coefficients
Guangtao Zhang
Yiting Duan
Guanyu Pan
Qijing Chen
Huiyu Yang
Zhikun Zhang
19
0
0
30 Jun 2023
CrystalGPT: Enhancing system-to-system transferability in crystallization prediction and control using time-series-transformers
Niranjan Sitapure
J. Kwon
21
51
0
31 May 2023
Conservative Physics-Informed Neural Networks for Non-Conservative Hyperbolic Conservation Laws Near Critical States
Reyna Quita
Yu-Shuo Chen
Hsin-Yi Lee
John M. Hong
PINN
11
0
0
22 May 2023
PINNs error estimates for nonlinear equations in
R
\mathbb{R}
R
-smooth Banach spaces
Jiexing Gao
Yurii Zakharian
28
1
0
18 May 2023
Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines
Kamaljyoti Nath
Xuhui Meng
Daniel J. Smith
George Karniadakis
PINN
28
20
0
26 Apr 2023
Physics-informed PointNet: On how many irregular geometries can it solve an inverse problem simultaneously? Application to linear elasticity
Ali Kashefi
Leonidas J. Guibas
T. Mukerji
PINN
3DPC
AI4CE
32
9
0
22 Mar 2023
A unified scalable framework for causal sweeping strategies for Physics-Informed Neural Networks (PINNs) and their temporal decompositions
Michael Penwarden
Ameya Dilip Jagtap
Shandian Zhe
George Karniadakis
Robert M. Kirby
PINN
AI4CE
23
57
0
28 Feb 2023
Physics-Informed Neural Networks for Material Model Calibration from Full-Field Displacement Data
D. Anton
Henning Wessels
AI4CE
36
7
0
15 Dec 2022
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
49
0
14 Nov 2022
Meta Learning of Interface Conditions for Multi-Domain Physics-Informed Neural Networks
Shibo Li
Michael Penwarden
Yiming Xu
Conor Tillinghast
Akil Narayan
Robert M. Kirby
Shandian Zhe
AI4CE
21
4
0
23 Oct 2022
A Dimension-Augmented Physics-Informed Neural Network (DaPINN) with High Level Accuracy and Efficiency
Weilong Guan
Kai-Ping Yang
Yinsheng Chen
Zhong Guan
PINN
AI4CE
18
12
0
19 Oct 2022
A Method for Computing Inverse Parametric PDE Problems with Random-Weight Neural Networks
S. Dong
Yiran Wang
29
20
0
09 Oct 2022
A deep learning approach to solve forward differential problems on graphs
Yuanyuan Zhao
Massimiliano Lupo Pasini
11
0
0
07 Oct 2022
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
56
24
0
03 Oct 2022
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
Ameya Dilip Jagtap
George Karniadakis
AI4CE
37
71
0
06 Sep 2022
Error estimates for physics informed neural networks approximating the Navier-Stokes equations
Tim De Ryck
Ameya Dilip Jagtap
S. Mishra
PINN
49
115
0
17 Mar 2022
Parallel Physics-Informed Neural Networks via Domain Decomposition
K. Shukla
Ameya Dilip Jagtap
George Karniadakis
PINN
101
274
0
20 Apr 2021
hp-VPINNs: Variational Physics-Informed Neural Networks With Domain Decomposition
E. Kharazmi
Zhongqiang Zhang
George Karniadakis
128
509
0
11 Mar 2020
1