ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2401.02008
44
2

Two-Stage Surrogate Modeling for Data-Driven Design Optimization with Application to Composite Microstructure Generation

4 January 2024
Farhad Pourkamali-Anaraki
Jamal F. Husseini
E. Pineda
B. Bednarcyk
Scott E. Stapleton
    AI4CE
ArXivPDFHTML
Abstract

This paper introduces a novel two-stage machine learning-based surrogate modeling framework to address inverse problems in scientific and engineering fields. In the first stage of the proposed framework, a machine learning model termed the "learner" identifies a limited set of candidates within the input design space whose predicted outputs closely align with desired outcomes. Subsequently, in the second stage, a separate surrogate model, functioning as an "evaluator," is employed to assess the reduced candidate space generated in the first stage. This evaluation process eliminates inaccurate and uncertain solutions, guided by a user-defined coverage level. The framework's distinctive contribution is the integration of conformal inference, providing a versatile and efficient approach that can be widely applicable. To demonstrate the effectiveness of the proposed framework compared to conventional single-stage inverse problems, we conduct several benchmark tests and investigate an engineering application focused on the micromechanical modeling of fiber-reinforced composites. The results affirm the superiority of our proposed framework, as it consistently produces more reliable solutions. Therefore, the introduced framework offers a unique perspective on fostering interactions between machine learning-based surrogate models in real-world applications.

View on arXiv
Comments on this paper