ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.10001
  4. Cited By
Recurrent Auto-Encoder With Multi-Resolution Ensemble and Predictive
  Coding for Multivariate Time-Series Anomaly Detection

Recurrent Auto-Encoder With Multi-Resolution Ensemble and Predictive Coding for Multivariate Time-Series Anomaly Detection

21 February 2022
Heejeong Choi
Subin Kim
Pilsung Kang
    AI4TS
ArXivPDFHTML

Papers citing "Recurrent Auto-Encoder With Multi-Resolution Ensemble and Predictive Coding for Multivariate Time-Series Anomaly Detection"

9 / 9 papers shown
Title
TadGAN: Time Series Anomaly Detection Using Generative Adversarial
  Networks
TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks
Alexander Geiger
Dongyu Liu
Sarah Alnegheimish
Alfredo Cuesta-Infante
K. Veeramachaneni
AI4TS
65
210
0
16 Sep 2020
TAnoGAN: Time Series Anomaly Detection with Generative Adversarial
  Networks
TAnoGAN: Time Series Anomaly Detection with Generative Adversarial Networks
M. A. Bashar
R. Nayak
GAN
AI4TS
56
103
0
21 Aug 2020
Video Representation Learning by Dense Predictive Coding
Video Representation Learning by Dense Predictive Coding
Tengda Han
Weidi Xie
Andrew Zisserman
SSL
93
361
0
10 Sep 2019
MAD-GAN: Multivariate Anomaly Detection for Time Series Data with
  Generative Adversarial Networks
MAD-GAN: Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks
Dan Li
Dacheng Chen
Lei Shi
Baihong Jin
Jonathan Goh
See-Kiong Ng
77
774
0
15 Jan 2019
Deep Learning for Anomaly Detection: A Survey
Deep Learning for Anomaly Detection: A Survey
Raghavendra Chalapathy
Sanjay Chawla
AI4TS
154
1,493
0
10 Jan 2019
A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an
  LSTM-based Variational Autoencoder
A Multimodal Anomaly Detector for Robot-Assisted Feeding Using an LSTM-based Variational Autoencoder
Daehyung Park
Yuuna Hoshi
Charles C. Kemp
DRL
73
747
0
02 Nov 2017
Soft-DTW: a Differentiable Loss Function for Time-Series
Soft-DTW: a Differentiable Loss Function for Time-Series
Marco Cuturi
Mathieu Blondel
AI4TS
169
623
0
05 Mar 2017
Deep multi-scale video prediction beyond mean square error
Deep multi-scale video prediction beyond mean square error
Michaël Mathieu
Camille Couprie
Yann LeCun
GAN
124
1,882
0
17 Nov 2015
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.0K
23,354
0
03 Jun 2014
1