ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.05621
  4. Cited By
Nonlinear MCMC for Bayesian Machine Learning
v1v2 (latest)

Nonlinear MCMC for Bayesian Machine Learning

11 February 2022
James Vuckovic
ArXiv (abs)PDFHTML

Papers citing "Nonlinear MCMC for Bayesian Machine Learning"

12 / 12 papers shown
Title
Handling of uncertainty in medical data using machine learning and
  probability theory techniques: A review of 30 years (1991-2020)
Handling of uncertainty in medical data using machine learning and probability theory techniques: A review of 30 years (1991-2020)
R. Alizadehsani
M. Roshanzamir
Sadiq Hussain
Abbas Khosravi
Afsaneh Koohestani
...
M. Panahiazar
S. Nahavandi
D. Srinivasan
A. Atiya
U. Acharya
OOD
67
99
0
23 Aug 2020
High-dimensional MCMC with a standard splitting scheme for the
  underdamped Langevin diffusion
High-dimensional MCMC with a standard splitting scheme for the underdamped Langevin diffusion
Pierre Monmarché
49
46
0
10 Jul 2020
Normalizing Flows for Probabilistic Modeling and Inference
Normalizing Flows for Probabilistic Modeling and Inference
George Papamakarios
Eric T. Nalisnick
Danilo Jimenez Rezende
S. Mohamed
Balaji Lakshminarayanan
TPMAI4CE
209
1,713
0
05 Dec 2019
Collective Proposal Distributions for Nonlinear MCMC samplers:
  Mean-Field Theory and Fast Implementation
Collective Proposal Distributions for Nonlinear MCMC samplers: Mean-Field Theory and Fast Implementation
Grégoire Clarté
A. Diez
Jean Feydy
48
8
0
18 Sep 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
74
279
0
11 Feb 2019
Langevin-gradient parallel tempering for Bayesian neural learning
Langevin-gradient parallel tempering for Bayesian neural learning
Rohitash Chandra
Konark Jain
R. Deo
Sally Cripps
BDL
57
46
0
11 Nov 2018
Exponential Ergodicity of the Bouncy Particle Sampler
Exponential Ergodicity of the Bouncy Particle Sampler
George Deligiannidis
Alexandre Bouchard-Côté
Arnaud Doucet
76
49
0
12 May 2017
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
78
233
0
11 Jul 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
854
9,346
0
06 Jun 2015
Variational Inference with Normalizing Flows
Variational Inference with Normalizing Flows
Danilo Jimenez Rezende
S. Mohamed
DRLBDL
322
4,196
0
21 May 2015
Black Box Variational Inference
Black Box Variational Inference
Rajesh Ranganath
S. Gerrish
David M. Blei
DRLBDL
150
1,167
0
31 Dec 2013
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian
  Monte Carlo
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
Matthew D. Hoffman
Andrew Gelman
174
4,313
0
18 Nov 2011
1