ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.08802
  4. Cited By
Deconfounding to Explanation Evaluation in Graph Neural Networks

Deconfounding to Explanation Evaluation in Graph Neural Networks

21 January 2022
Yingmin Wu
Xiang Wang
An Zhang
Xia Hu
Fuli Feng
Xiangnan He
Tat-Seng Chua
    FAtt
    CML
ArXivPDFHTML

Papers citing "Deconfounding to Explanation Evaluation in Graph Neural Networks"

34 / 34 papers shown
Title
Generative Adversarial Networks
Generative Adversarial Networks
Gilad Cohen
Raja Giryes
GAN
177
30,069
0
01 Mar 2022
Counterfactual Zero-Shot and Open-Set Visual Recognition
Counterfactual Zero-Shot and Open-Set Visual Recognition
Zhongqi Yue
Tan Wang
Hanwang Zhang
Qianru Sun
Xiansheng Hua
BDL
200
193
0
01 Mar 2021
On Explainability of Graph Neural Networks via Subgraph Explorations
On Explainability of Graph Neural Networks via Subgraph Explorations
Hao Yuan
Haiyang Yu
Jie Wang
Kang Li
Shuiwang Ji
FAtt
62
383
0
09 Feb 2021
Parameterized Explainer for Graph Neural Network
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
123
546
0
09 Nov 2020
Feature Removal Is a Unifying Principle for Model Explanation Methods
Feature Removal Is a Unifying Principle for Model Explanation Methods
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
92
33
0
06 Nov 2020
Interpretation of NLP models through input marginalization
Interpretation of NLP models through input marginalization
Siwon Kim
Jihun Yi
Eunji Kim
Sungroh Yoon
MILM
FAtt
50
58
0
27 Oct 2020
Contrastive Graph Neural Network Explanation
Contrastive Graph Neural Network Explanation
Lukas Faber
A. K. Moghaddam
Roger Wattenhofer
62
36
0
26 Oct 2020
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph
  Neural Networks
PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks
Minh Nhat Vu
My T. Thai
BDL
50
330
0
12 Oct 2020
Interpreting Graph Neural Networks for NLP With Differentiable Edge
  Masking
Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking
Michael Schlichtkrull
Nicola De Cao
Ivan Titov
AI4CE
55
217
0
01 Oct 2020
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Higher-Order Explanations of Graph Neural Networks via Relevant Walks
Thomas Schnake
Oliver Eberle
Jonas Lederer
Shinichi Nakajima
Kristof T. Schütt
Klaus-Robert Muller
G. Montavon
90
218
0
05 Jun 2020
XGNN: Towards Model-Level Explanations of Graph Neural Networks
XGNN: Towards Model-Level Explanations of Graph Neural Networks
Haonan Yuan
Jiliang Tang
Xia Hu
Shuiwang Ji
61
393
0
03 Jun 2020
RelEx: A Model-Agnostic Relational Model Explainer
RelEx: A Model-Agnostic Relational Model Explainer
Yue Zhang
David DeFazio
Arti Ramesh
29
106
0
30 May 2020
Benchmarking Graph Neural Networks
Benchmarking Graph Neural Networks
Vijay Prakash Dwivedi
Chaitanya K. Joshi
Anh Tuan Luu
T. Laurent
Yoshua Bengio
Xavier Bresson
299
931
0
02 Mar 2020
ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph
  Representations
ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations
Ekagra Ranjan
Soumya Sanyal
Partha P. Talukdar
GNN
111
330
0
18 Nov 2019
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
CXPlain: Causal Explanations for Model Interpretation under Uncertainty
Patrick Schwab
W. Karlen
FAtt
CML
104
208
0
27 Oct 2019
Explaining image classifiers by removing input features using generative
  models
Explaining image classifiers by removing input features using generative models
Chirag Agarwal
Anh Totti Nguyen
FAtt
35
15
0
09 Oct 2019
Explainability Techniques for Graph Convolutional Networks
Explainability Techniques for Graph Convolutional Networks
Federico Baldassarre
Hossein Azizpour
GNN
FAtt
148
264
0
31 May 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
111
1,300
0
10 Mar 2019
Fast Graph Representation Learning with PyTorch Geometric
Fast Graph Representation Learning with PyTorch Geometric
Matthias Fey
J. E. Lenssen
3DH
GNN
3DPC
169
4,303
0
06 Mar 2019
Robustly Disentangled Causal Mechanisms: Validating Deep Representations
  for Interventional Robustness
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CML
OOD
DRL
103
160
0
31 Oct 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language
  Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.0K
93,936
0
11 Oct 2018
Explaining Image Classifiers by Counterfactual Generation
Explaining Image Classifiers by Counterfactual Generation
C. Chang
Elliot Creager
Anna Goldenberg
David Duvenaud
VLM
48
265
0
20 Jul 2018
Adversarial Attack on Graph Structured Data
Adversarial Attack on Graph Structured Data
H. Dai
Hui Li
Tian Tian
Xin Huang
L. Wang
Jun Zhu
Le Song
GNN
AAML
OOD
75
767
0
06 Jun 2018
Constrained Graph Variational Autoencoders for Molecule Design
Constrained Graph Variational Autoencoders for Molecule Design
Qi Liu
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
BDL
53
453
0
23 May 2018
Adversarial Attacks on Neural Networks for Graph Data
Adversarial Attacks on Neural Networks for Graph Data
Daniel Zügner
Amir Akbarnejad
Stephan Günnemann
GNN
AAML
OOD
113
1,060
0
21 May 2018
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels
Matthias Fey
J. E. Lenssen
F. Weichert
H. Müller
3DPC
113
440
0
24 Nov 2017
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
348
19,991
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
403
15,066
0
07 Jun 2017
Real Time Image Saliency for Black Box Classifiers
Real Time Image Saliency for Black Box Classifiers
P. Dabkowski
Y. Gal
55
586
0
22 May 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
55
1,514
0
11 Apr 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
364
1,817
0
25 Nov 2016
Variational Graph Auto-Encoders
Variational Graph Auto-Encoders
Thomas Kipf
Max Welling
GNN
BDL
SSL
CML
107
3,559
0
21 Nov 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
221
19,796
0
07 Oct 2016
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
896
149,474
0
22 Dec 2014
1