ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.05890
  4. Cited By
Robust uncertainty estimates with out-of-distribution pseudo-inputs
  training

Robust uncertainty estimates with out-of-distribution pseudo-inputs training

15 January 2022
Pierre Segonne
Yevgen Zainchkovskyy
Søren Hauberg
    UQCVOOD
ArXiv (abs)PDFHTML

Papers citing "Robust uncertainty estimates with out-of-distribution pseudo-inputs training"

18 / 18 papers shown
Title
How Neural Networks Extrapolate: From Feedforward to Graph Neural
  Networks
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
112
312
0
24 Sep 2020
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise
  Variance Parameterization
Variational Variance: Simple, Reliable, Calibrated Heteroscedastic Noise Variance Parameterization
Andrew Stirn
David A. Knowles
DRL
64
10
0
08 Jun 2020
Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep
  Ensembles
Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep Ensembles
Siddhartha Jain
Ge Liu
Jonas W. Mueller
David K Gifford
UQCV
59
60
0
18 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
170
1,704
0
06 Jun 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,483
0
11 Dec 2018
Predictive Uncertainty Estimation via Prior Networks
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UDBDLEDLUQCVPER
193
922
0
28 Feb 2018
Training Confidence-calibrated Classifiers for Detecting
  Out-of-Distribution Samples
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee
Honglak Lee
Kibok Lee
Jinwoo Shin
OODD
118
882
0
26 Nov 2017
Latent Space Oddity: on the Curvature of Deep Generative Models
Latent Space Oddity: on the Curvature of Deep Generative Models
Georgios Arvanitidis
Lars Kai Hansen
Søren Hauberg
DRL
107
270
0
31 Oct 2017
Good Semi-supervised Learning that Requires a Bad GAN
Good Semi-supervised Learning that Requires a Bad GAN
Zihang Dai
Zhilin Yang
Fan Yang
William W. Cohen
Ruslan Salakhutdinov
GAN
55
483
0
27 May 2017
Learning from Simulated and Unsupervised Images through Adversarial
  Training
Learning from Simulated and Unsupervised Images through Adversarial Training
A. Shrivastava
Tomas Pfister
Oncel Tuzel
J. Susskind
Wenda Wang
Russ Webb
GAN
103
1,801
0
22 Dec 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
166
3,468
0
07 Oct 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
287
4,807
0
04 Jan 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCVBDL
831
9,345
0
06 Jun 2015
Weight Uncertainty in Neural Networks
Weight Uncertainty in Neural Networks
Charles Blundell
Julien Cornebise
Koray Kavukcuoglu
Daan Wierstra
UQCVBDL
192
1,892
0
20 May 2015
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural
  Networks
Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks
José Miguel Hernández-Lobato
Ryan P. Adams
UQCVBDL
130
946
0
18 Feb 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAMLGAN
280
19,107
0
20 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
169
3,275
0
05 Dec 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,923
0
20 Dec 2013
1