ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.13835
  4. Cited By
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

27 December 2021
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
ArXivPDFHTML

Papers citing "Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies"

46 / 46 papers shown
Title
Advancing CMA-ES with Learning-Based Cooperative Coevolution for Scalable Optimization
Advancing CMA-ES with Learning-Based Cooperative Coevolution for Scalable Optimization
Hongshu Guo
Wenjie Qiu
Zeyuan Ma
Xuzhi Zhang
Jun Zhang
Jiawei Liu
49
1
0
24 Apr 2025
Make Optimization Once and for All with Fine-grained Guidance
Mingjia Shi
Ruihan Lin
Xuxi Chen
Yuhao Zhou
Zezhen Ding
...
Tong Wang
Kai Wang
Zhangyang Wang
Jingyang Zhang
Tianlong Chen
55
1
0
14 Mar 2025
Variational Bayesian Pseudo-Coreset
Variational Bayesian Pseudo-Coreset
Hyungi Lee
S. Lee
Juho Lee
BDL
38
0
0
28 Feb 2025
Generalized Kernel Inducing Points by Duality Gap for Dataset Distillation
Generalized Kernel Inducing Points by Duality Gap for Dataset Distillation
Tatsuya Aoyama
Hanting Yang
Hiroyuki Hanada
Satoshi Akahane
Tomonari Tanaka
...
Noriaki Hashimoto
Taro Murayama
Hanju Lee
Shinya Kojima
Ichiro Takeuchi
72
0
0
18 Feb 2025
Learning Versatile Optimizers on a Compute Diet
Learning Versatile Optimizers on a Compute Diet
A. Moudgil
Boris Knyazev
Guillaume Lajoie
Eugene Belilovsky
147
0
0
22 Jan 2025
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Can Learned Optimization Make Reinforcement Learning Less Difficult?
Alexander David Goldie
Chris Xiaoxuan Lu
Matthew Jackson
Shimon Whiteson
Jakob N. Foerster
42
3
0
09 Jul 2024
$μ$LO: Compute-Efficient Meta-Generalization of Learned Optimizers
μμμLO: Compute-Efficient Meta-Generalization of Learned Optimizers
Benjamin Thérien
Charles-Étienne Joseph
Boris Knyazev
Edouard Oyallon
Irina Rish
Eugene Belilovsky
AI4CE
38
1
0
31 May 2024
Universal Neural Functionals
Universal Neural Functionals
Allan Zhou
Chelsea Finn
James Harrison
32
12
0
07 Feb 2024
Moco: A Learnable Meta Optimizer for Combinatorial Optimization
Moco: A Learnable Meta Optimizer for Combinatorial Optimization
Tim Dernedde
Daniela Thyssens
Soren Dittrich
Maximilan Stubbemann
Lars Schmidt-Thieme
59
5
0
07 Feb 2024
Can We Learn Communication-Efficient Optimizers?
Can We Learn Communication-Efficient Optimizers?
Charles-Étienne Joseph
Benjamin Thérien
A. Moudgil
Boris Knyazev
Eugene Belilovsky
40
1
0
02 Dec 2023
Communication Efficient and Privacy-Preserving Federated Learning Based
  on Evolution Strategies
Communication Efficient and Privacy-Preserving Federated Learning Based on Evolution Strategies
Guangchen Lan
FedML
29
0
0
05 Nov 2023
Model-Based Reparameterization Policy Gradient Methods: Theory and
  Practical Algorithms
Model-Based Reparameterization Policy Gradient Methods: Theory and Practical Algorithms
Shenao Zhang
Boyi Liu
Zhaoran Wang
Tuo Zhao
24
2
0
30 Oct 2023
Fast Graph Condensation with Structure-based Neural Tangent Kernel
Fast Graph Condensation with Structure-based Neural Tangent Kernel
Lin Wang
Wenqi Fan
Jiatong Li
Yao Ma
Qing Li
DD
31
27
0
17 Oct 2023
Generating Transferable Adversarial Simulation Scenarios for
  Self-Driving via Neural Rendering
Generating Transferable Adversarial Simulation Scenarios for Self-Driving via Neural Rendering
Yasasa Abeysirigoonawardena
Kevin Xie
Chuhan Chen
Salar Hosseini
Ruiting Chen
Ruiqi Wang
Florian Shkurti
36
2
0
27 Sep 2023
B2Opt: Learning to Optimize Black-box Optimization with Little Budget
B2Opt: Learning to Optimize Black-box Optimization with Little Budget
Xiaobin Li
K. Wu
Xiaoyu Zhang
Handing Wang
Jiaheng Liu
22
9
0
24 Apr 2023
Low-Variance Gradient Estimation in Unrolled Computation Graphs with
  ES-Single
Low-Variance Gradient Estimation in Unrolled Computation Graphs with ES-Single
Paul Vicol
Zico Kolter
Kevin Swersky
13
6
0
21 Apr 2023
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution
  Strategies
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
Oscar Li
James Harrison
Jascha Narain Sohl-Dickstein
Virginia Smith
Luke Metz
46
5
0
21 Apr 2023
Improving physics-informed neural networks with meta-learned
  optimization
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
36
18
0
13 Mar 2023
M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast
  Self-Adaptation
M-L2O: Towards Generalizable Learning-to-Optimize by Test-Time Fast Self-Adaptation
Junjie Yang
Xuxi Chen
Tianlong Chen
Zhangyang Wang
Yitao Liang
18
2
0
28 Feb 2023
Denoising Diffusion Samplers
Denoising Diffusion Samplers
Francisco Vargas
Will Grathwohl
Arnaud Doucet
DiffM
24
75
0
27 Feb 2023
Dataset Distillation with Convexified Implicit Gradients
Dataset Distillation with Convexified Implicit Gradients
Noel Loo
Ramin Hasani
Mathias Lechner
Daniela Rus
DD
31
41
0
13 Feb 2023
Learning to Optimize for Reinforcement Learning
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
26
6
0
03 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
39
9
0
02 Feb 2023
Probabilistic Bilevel Coreset Selection
Probabilistic Bilevel Coreset Selection
Xiao Zhou
Renjie Pi
Weizhong Zhang
Yong Lin
Tong Zhang
NoLa
28
27
0
24 Jan 2023
Federated Automatic Differentiation
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Data Distillation: A Survey
Data Distillation: A Survey
Noveen Sachdeva
Julian McAuley
DD
45
73
0
11 Jan 2023
PyPop7: A Pure-Python Library for Population-Based Black-Box
  Optimization
PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization
Qiqi Duan
Guochen Zhou
Chang Shao
Zhuowei Wang
Mingyang Feng
Yuwei Huang
Yajing Tan
Yijun Yang
Qi Zhao
Yuhui Shi
26
5
0
12 Dec 2022
evosax: JAX-based Evolution Strategies
evosax: JAX-based Evolution Strategies
R. T. Lange
30
54
0
08 Dec 2022
Transformer-Based Learned Optimization
Transformer-Based Learned Optimization
Erik Gartner
Luke Metz
Mykhaylo Andriluka
C. Freeman
C. Sminchisescu
18
11
0
02 Dec 2022
Discovering Evolution Strategies via Meta-Black-Box Optimization
Discovering Evolution Strategies via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Tom Zahavy
Valenti Dallibard
Chris Xiaoxuan Lu
Satinder Singh
Sebastian Flennerhag
44
47
0
21 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
29
60
0
17 Nov 2022
Efficient Non-Parametric Optimizer Search for Diverse Tasks
Efficient Non-Parametric Optimizer Search for Diverse Tasks
Ruochen Wang
Yuanhao Xiong
Minhao Cheng
Cho-Jui Hsieh
27
5
0
27 Sep 2022
An Investigation of the Bias-Variance Tradeoff in Meta-Gradients
An Investigation of the Bias-Variance Tradeoff in Meta-Gradients
Risto Vuorio
Jacob Beck
Shimon Whiteson
Jakob N. Foerster
Gregory Farquhar
17
8
0
22 Sep 2022
A Closer Look at Learned Optimization: Stability, Robustness, and
  Inductive Biases
A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
James Harrison
Luke Metz
Jascha Narain Sohl-Dickstein
47
22
0
22 Sep 2022
Theseus: A Library for Differentiable Nonlinear Optimization
Theseus: A Library for Differentiable Nonlinear Optimization
Luis Pineda
Taosha Fan
Maurizio Monge
S. Venkataraman
Paloma Sodhi
...
Austin S. Wang
Stuart Anderson
Jing Dong
Brandon Amos
Mustafa Mukadam
24
76
0
19 Jul 2022
Dataset Distillation using Neural Feature Regression
Dataset Distillation using Neural Feature Regression
Yongchao Zhou
E. Nezhadarya
Jimmy Ba
DD
FedML
39
149
0
01 Jun 2022
Metrizing Fairness
Metrizing Fairness
Yves Rychener
Bahar Taşkesen
Daniel Kuhn
FaML
36
4
0
30 May 2022
Self-Guided Noise-Free Data Generation for Efficient Zero-Shot Learning
Self-Guided Noise-Free Data Generation for Efficient Zero-Shot Learning
Jiahui Gao
Renjie Pi
Yong Lin
Hang Xu
Jiacheng Ye
Zhiyong Wu
Weizhong Zhang
Xiaodan Liang
Zhenguo Li
Lingpeng Kong
SyDa
VLM
67
45
0
25 May 2022
Hyper-Learning for Gradient-Based Batch Size Adaptation
Hyper-Learning for Gradient-Based Batch Size Adaptation
Calum MacLellan
Feng Dong
6
0
0
17 May 2022
Practical tradeoffs between memory, compute, and performance in learned
  optimizers
Practical tradeoffs between memory, compute, and performance in learned optimizers
Luke Metz
C. Freeman
James Harrison
Niru Maheswaranathan
Jascha Narain Sohl-Dickstein
33
32
0
22 Mar 2022
Neural Simulated Annealing
Neural Simulated Annealing
Alvaro H. C. Correia
Daniel E. Worrall
Roberto Bondesan
11
7
0
04 Mar 2022
Amortized Proximal Optimization
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
25
14
0
28 Feb 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Bilevel Programming for Hyperparameter Optimization and Meta-Learning
Luca Franceschi
P. Frasconi
Saverio Salzo
Riccardo Grazzi
Massimiliano Pontil
110
716
0
13 Jun 2018
Forward and Reverse Gradient-Based Hyperparameter Optimization
Forward and Reverse Gradient-Based Hyperparameter Optimization
Luca Franceschi
Michele Donini
P. Frasconi
Massimiliano Pontil
127
406
0
06 Mar 2017
Variational Optimization
Variational Optimization
J. Staines
David Barber
DRL
65
53
0
18 Dec 2012
1