ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.11685
  4. Cited By
Cost Aggregation Is All You Need for Few-Shot Segmentation

Cost Aggregation Is All You Need for Few-Shot Segmentation

22 December 2021
Sunghwan Hong
Seokju Cho
Jisu Nam
Seungryong Kim
    ViT
ArXivPDFHTML

Papers citing "Cost Aggregation Is All You Need for Few-Shot Segmentation"

50 / 63 papers shown
Title
SOFT: Softmax-free Transformer with Linear Complexity
SOFT: Softmax-free Transformer with Linear Complexity
Jiachen Lu
Jinghan Yao
Junge Zhang
Martin Danelljan
Hang Xu
Weiguo Gao
Chunjing Xu
Thomas B. Schon
Li Zhang
59
166
0
22 Oct 2021
Convolutional Hough Matching Networks for Robust and Efficient Visual
  Correspondence
Convolutional Hough Matching Networks for Robust and Efficient Visual Correspondence
Juhong Min
Seungwook Kim
Minsu Cho
54
16
0
11 Sep 2021
Fastformer: Additive Attention Can Be All You Need
Fastformer: Additive Attention Can Be All You Need
Chuhan Wu
Fangzhao Wu
Tao Qi
Yongfeng Huang
Xing Xie
76
119
0
20 Aug 2021
Do Vision Transformers See Like Convolutional Neural Networks?
Do Vision Transformers See Like Convolutional Neural Networks?
M. Raghu
Thomas Unterthiner
Simon Kornblith
Chiyuan Zhang
Alexey Dosovitskiy
ViT
112
953
0
19 Aug 2021
Few-shot Segmentation with Optimal Transport Matching and Message Flow
Few-shot Segmentation with Optimal Transport Matching and Message Flow
Weide Liu
Chi Zhang
Henghui Ding
Tzu-Yi Hung
Guosheng Lin
61
51
0
19 Aug 2021
Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight
  Transformer
Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer
Zhihe Lu
Sen He
Xiatian Zhu
Li Zhang
Yi-Zhe Song
Tao Xiang
ViT
198
179
0
06 Aug 2021
Learning Meta-class Memory for Few-Shot Semantic Segmentation
Learning Meta-class Memory for Few-Shot Semantic Segmentation
Zhonghua Wu
Xiangxi Shi
Guosheng lin
Jianfei Cai
VLM
114
109
0
06 Aug 2021
Boosting Few-shot Semantic Segmentation with Transformers
Boosting Few-shot Semantic Segmentation with Transformers
Guolei Sun
Yun-Hai Liu
Christos Sakaridis
Luc Van Gool
ViT
48
9
0
04 Aug 2021
Multi-scale Matching Networks for Semantic Correspondence
Multi-scale Matching Networks for Semantic Correspondence
Dongyang Zhao
Ziyang Song
Zhenghao Ji
Gangming Zhao
Weifeng Ge
Yizhou Yu
54
49
0
31 Jul 2021
Early Convolutions Help Transformers See Better
Early Convolutions Help Transformers See Better
Tete Xiao
Mannat Singh
Eric Mintun
Trevor Darrell
Piotr Dollár
Ross B. Girshick
45
765
0
28 Jun 2021
Deep Matching Prior: Test-Time Optimization for Dense Correspondence
Deep Matching Prior: Test-Time Optimization for Dense Correspondence
Sunghwan Hong
Seungryong Kim
68
27
0
06 Jun 2021
CATs: Cost Aggregation Transformers for Visual Correspondence
CATs: Cost Aggregation Transformers for Visual Correspondence
Seokju Cho
Sunghwan Hong
Sangryul Jeon
Yunsung Lee
Kwanghoon Sohn
Seungryong Kim
ViT
69
88
0
04 Jun 2021
Few-Shot Segmentation via Cycle-Consistent Transformer
Few-Shot Segmentation via Cycle-Consistent Transformer
Gengwei Zhang
Guoliang Kang
Yi Yang
Yunchao Wei
ViT
53
184
0
04 Jun 2021
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation
Gen Li
Varun Jampani
Laura Sevilla-Lara
Deqing Sun
Jonghyun Kim
Joongkyu Kim
83
364
0
05 Apr 2021
Hypercorrelation Squeeze for Few-Shot Segmentation
Hypercorrelation Squeeze for Few-Shot Segmentation
Juhong Min
Dahyun Kang
Minsu Cho
76
295
0
04 Apr 2021
Self-Guided and Cross-Guided Learning for Few-Shot Segmentation
Self-Guided and Cross-Guided Learning for Few-Shot Segmentation
Bingfeng Zhang
Jimin Xiao
Terry Qin
53
165
0
30 Mar 2021
Mining Latent Classes for Few-shot Segmentation
Mining Latent Classes for Few-shot Segmentation
Lihe Yang
Wei Zhuo
Lei Qi
Yinghuan Shi
Yang Gao
65
126
0
29 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
421
21,347
0
25 Mar 2021
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction
  without Convolutions
Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions
Wenhai Wang
Enze Xie
Xiang Li
Deng-Ping Fan
Kaitao Song
Ding Liang
Tong Lu
Ping Luo
Ling Shao
ViT
503
3,709
0
24 Feb 2021
Learning Accurate Dense Correspondences and When to Trust Them
Learning Accurate Dense Correspondences and When to Trust Them
Prune Truong
Martin Danelljan
Luc Van Gool
Radu Timofte
3DH
3DPC
109
131
0
05 Jan 2021
Few-Shot Segmentation Without Meta-Learning: A Good Transductive
  Inference Is All You Need?
Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?
Malik Boudiaf
H. Kervadec
Imtiaz Masud Ziko
Pablo Piantanida
Ismail Ben Ayed
Jose Dolz
VLM
225
190
0
11 Dec 2020
An Image is Worth 16x16 Words: Transformers for Image Recognition at
  Scale
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
Alexey Dosovitskiy
Lucas Beyer
Alexander Kolesnikov
Dirk Weissenborn
Xiaohua Zhai
...
Matthias Minderer
G. Heigold
Sylvain Gelly
Jakob Uszkoreit
N. Houlsby
ViT
555
40,961
0
22 Oct 2020
Prior Guided Feature Enrichment Network for Few-Shot Segmentation
Prior Guided Feature Enrichment Network for Few-Shot Segmentation
Zhuotao Tian
Hengshuang Zhao
Michelle Shu
Zhicheng Yang
Ruiyu Li
Jiaya Jia
50
518
0
04 Aug 2020
Learning to Compose Hypercolumns for Visual Correspondence
Learning to Compose Hypercolumns for Visual Correspondence
Juhong Min
Jongmin Lee
Jean Ponce
Minsu Cho
OCL
60
77
0
21 Jul 2020
Part-aware Prototype Network for Few-shot Semantic Segmentation
Part-aware Prototype Network for Few-shot Semantic Segmentation
Yongfei Liu
Xiangyi Zhang
Songyang Zhang
Xuming He
41
321
0
13 Jul 2020
Transformers are RNNs: Fast Autoregressive Transformers with Linear
  Attention
Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention
Angelos Katharopoulos
Apoorv Vyas
Nikolaos Pappas
Franccois Fleuret
174
1,755
0
29 Jun 2020
Linformer: Self-Attention with Linear Complexity
Linformer: Self-Attention with Linear Complexity
Sinong Wang
Belinda Z. Li
Madian Khabsa
Han Fang
Hao Ma
191
1,700
0
08 Jun 2020
Hierarchical Multi-Scale Attention for Semantic Segmentation
Hierarchical Multi-Scale Attention for Semantic Segmentation
Andrew Tao
Karan Sapra
Bryan Catanzaro
SSeg
62
452
0
21 May 2020
Efficient Neighbourhood Consensus Networks via Submanifold Sparse
  Convolutions
Efficient Neighbourhood Consensus Networks via Submanifold Sparse Convolutions
Ignacio Rocco
Relja Arandjelović
Josef Sivic
55
173
0
22 Apr 2020
Correspondence Networks with Adaptive Neighbourhood Consensus
Correspondence Networks with Adaptive Neighbourhood Consensus
Shuda Li
Kai Han
Theo W. Costain
Henry Howard-Jenkins
V. Prisacariu
3DV
43
85
0
26 Mar 2020
CRNet: Cross-Reference Networks for Few-Shot Segmentation
CRNet: Cross-Reference Networks for Few-Shot Segmentation
Weide Liu
Chi Zhang
Guosheng Lin
Fayao Liu
SSeg
205
194
0
24 Mar 2020
GLU-Net: Global-Local Universal Network for Dense Flow and
  Correspondences
GLU-Net: Global-Local Universal Network for Dense Flow and Correspondences
Prune Truong
Martin Danelljan
Radu Timofte
3DPC
47
186
0
11 Dec 2019
Feature Weighting and Boosting for Few-Shot Segmentation
Feature Weighting and Boosting for Few-Shot Segmentation
Khoi Duc Minh Nguyen
S. Todorovic
105
331
0
28 Sep 2019
Dynamic Context Correspondence Network for Semantic Alignment
Dynamic Context Correspondence Network for Semantic Alignment
Shuaiyi Huang
Qiuyue Wang
Songyang Zhang
Shipeng Yan
Xuming He
54
91
0
08 Sep 2019
SPair-71k: A Large-scale Benchmark for Semantic Correspondence
SPair-71k: A Large-scale Benchmark for Semantic Correspondence
Juhong Min
Jongmin Lee
Jean Ponce
Minsu Cho
61
131
0
28 Aug 2019
Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural
  Features
Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features
Juhong Min
Jongmin Lee
Jean Ponce
Minsu Cho
74
108
0
18 Aug 2019
PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment
PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment
Kaixin Wang
Jun Hao Liew
Yingtian Zou
Daquan Zhou
Jiashi Feng
VLM
47
1,068
0
18 Aug 2019
FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation
FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation
Xiang Li
Tianhan Wei
Yau Pun Chen
Yu-Wing Tai
Chi-Keung Tang
VLM
74
248
0
29 Jul 2019
Local Relation Networks for Image Recognition
Local Relation Networks for Image Recognition
Han Hu
Zheng Zhang
Zhenda Xie
Stephen Lin
FAtt
67
501
0
25 Apr 2019
SFNet: Learning Object-aware Semantic Correspondence
SFNet: Learning Object-aware Semantic Correspondence
Junghyup Lee
Dohyung Kim
Jean Ponce
Bumsub Ham
3DPC
65
140
0
03 Apr 2019
CANet: Class-Agnostic Segmentation Networks with Iterative Refinement
  and Attentive Few-Shot Learning
CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and Attentive Few-Shot Learning
Chi Zhang
Guosheng Lin
Fayao Liu
Rui Yao
Chunhua Shen
VLM
SSeg
61
544
0
06 Mar 2019
Neighbourhood Consensus Networks
Neighbourhood Consensus Networks
Ignacio Rocco
Mircea Cimpoi
Relja Arandjelović
Akihiko Torii
Tomas Pajdla
Josef Sivic
78
389
0
24 Oct 2018
Albumentations: fast and flexible image augmentations
Albumentations: fast and flexible image augmentations
A. Buslaev
Alex Parinov
Eugene Khvedchenya
V. Iglovikov
Alexandr A Kalinin
136
1,973
0
18 Sep 2018
Encoder-Decoder with Atrous Separable Convolution for Semantic Image
  Segmentation
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
Liang-Chieh Chen
Yukun Zhu
George Papandreou
Florian Schroff
Hartwig Adam
SSeg
405
13,103
0
07 Feb 2018
End-to-end weakly-supervised semantic alignment
End-to-end weakly-supervised semantic alignment
Ignacio Rocco
Relja Arandjelović
Josef Sivic
63
179
0
19 Dec 2017
Relation Networks for Object Detection
Relation Networks for Object Detection
Han Hu
Jiayuan Gu
Zheng Zhang
Jifeng Dai
Yichen Wei
ObjD
102
1,222
0
30 Nov 2017
One-Shot Learning for Semantic Segmentation
One-Shot Learning for Semantic Segmentation
Amirreza Shaban
Shray Bansal
Ziqiang Liu
Irfan Essa
Byron Boots
SSeg
VLM
85
704
0
11 Sep 2017
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume
Deqing Sun
Xiaodong Yang
Ming-Yuan Liu
Jan Kautz
3DPC
249
2,443
0
07 Sep 2017
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
658
131,414
0
12 Jun 2017
Proposal Flow: Semantic Correspondences from Object Proposals
Proposal Flow: Semantic Correspondences from Object Proposals
Bumsub Ham
Minsu Cho
Cordelia Schmid
Jean Ponce
112
135
0
21 Mar 2017
12
Next