ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.15402
28
126

Mining Latent Classes for Few-shot Segmentation

29 March 2021
Lihe Yang
Wei Zhuo
Lei Qi
Yinghuan Shi
Yang Gao
ArXivPDFHTML
Abstract

Few-shot segmentation (FSS) aims to segment unseen classes given only a few annotated samples. Existing methods suffer the problem of feature undermining, i.e. potential novel classes are treated as background during training phase. Our method aims to alleviate this problem and enhance the feature embedding on latent novel classes. In our work, we propose a novel joint-training framework. Based on conventional episodic training on support-query pairs, we add an additional mining branch that exploits latent novel classes via transferable sub-clusters, and a new rectification technique on both background and foreground categories to enforce more stable prototypes. Over and above that, our transferable sub-cluster has the ability to leverage extra unlabeled data for further feature enhancement. Extensive experiments on two FSS benchmarks demonstrate that our method outperforms previous state-of-the-art by a large margin of 3.7% mIOU on PASCAL-5i and 7.0% mIOU on COCO-20i at the cost of 74% fewer parameters and 2.5x faster inference speed. The source code is available at https://github.com/LiheYoung/MiningFSS.

View on arXiv
Comments on this paper