ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.10074
  4. Cited By
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in
  Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking
  Results

QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results

19 December 2021
Raghav Mehta
Angelos Filos
Ujjwal Baid
C. Sako
Richard McKinley
Michael Rebsamen
K. Datwyler
Raphael Meier
Piotr Radojewski
G. Murugesan
S. Nalawade
Chandan Ganesh
B. Wagner
F. Yu
B. Fei
A. Madhuranthakam
J. Maldjian
Laura Alexandra Daza
C. Tobon-Gomez
Pablo Arbelaez
Chengliang Dai
Shuo Wang
Hadrien Raynaud
Yuanhan Mo
Elsa D. Angelini
Yike Guo
Wenjia Bai
Subhashis Banerjee
Linmin Pei
A. Murat
Sarahi Rosas-González
Illyess Zemmoura
C. Tauber
Minh H. Vu
T. Nyholm
Tommy Löfstedt
Laura Mora Ballestar
Verónica Vilaplana
Hugh McHugh
G. M. Talou
Alan Wang
J. Patel
Ken Chang
K. Hoebel
M. Gidwani
N. Arun
Sharut Gupta
M. Aggarwal
Praveer Singh
Elizabeth R Gerstner
Jayashree Kalpathy-Cramer
Nicolas Boutry
Alexis Huard
Lasitha Vidyaratne
Md Monibor Rahman
Khan M. Iftekharuddin
Joseph Chazalon
Élodie Puybareau
Guillaume Tochon
Jun Ma
Mariano Cabezas
Xavier Llado
A. Oliver
Liliana Valencia
Sergi Valverde
Mehdi Amian
Mohammadreza Soltaninejad
Andriy Myronenko
Ali Hatamizadeh
Xuejing Feng
Q. Dou
Nicholas J. Tustison
Craig Meyer
Nisarg A. Shah
Sanjay Talbar
M. Weber
A. Mahajan
Andras Jakab
Roland Wiest
Hassan M. Fathallah-Shaykh
A. Nazeri
Mikhail Milchenko
Daniel S. Marcus
Aikaterini Kotrotsou
Rivka Colen
John Freymann
J. Kirby
Christos Davatzikos
Bjoern Menze
Spyridon Bakas
Y. Gal
Tal Arbel
    UQCV
ArXivPDFHTML

Papers citing "QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results"

50 / 51 papers shown
Title
Why does my medical AI look at pictures of birds? Exploring the efficacy of transfer learning across domain boundaries
Why does my medical AI look at pictures of birds? Exploring the efficacy of transfer learning across domain boundaries
F. Jonske
M. Kim
Enrico Nasca
J. Evers
Johannes Haubold
...
F. Nensa
Michael Kamp
C. Seibold
Jan Egger
Jens Kleesiek
150
1
0
17 Feb 2025
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to
  Multi-Class Segmentation
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Robin Camarasa
D. Bos
J. Hendrikse
P. Nederkoorn
D. Epidemiology
D. Neurology
Department of Computer Science
UQCV
46
12
0
22 Sep 2021
A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation
A Decoupled Uncertainty Model for MRI Segmentation Quality Estimation
Richard Shaw
Carole H. Sudre
Sebastien Ourselin
M. Jorge Cardoso
H. Pemberton
UQCV
79
5
0
06 Sep 2021
The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation
  and Radiogenomic Classification
The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification
Ujjwal Baid
S. Ghodasara
S. Mohan
Michel Bilello
Evan Calabrese
...
M. Weber
A. Mahajan
Bjoern Menze
Adam Flanders
Spyridon Bakas
131
631
0
05 Jul 2021
The Medical Segmentation Decathlon
The Medical Segmentation Decathlon
Michela Antonelli
Annika Reinke
Spyridon Bakas
Keyvan Farahani
AnnetteKopp-Schneider
...
Zhanwei Xu
Yefeng Zheng
Amber L. Simpson
Lena Maier-Hein
M. Jorge Cardoso
OOD
106
981
0
10 Jun 2021
The Federated Tumor Segmentation (FeTS) Challenge
The Federated Tumor Segmentation (FeTS) Challenge
Sarthak Pati
Ujjwal Baid
M. Zenk
Brandon Edwards
Micah J. Sheller
...
Lena Maier-Hein
Jens Kleesiek
Bjoern Menze
Klaus Maier-Hein
Spyridon Bakas
FedML
OOD
78
75
0
12 May 2021
Common Limitations of Image Processing Metrics: A Picture Story
Common Limitations of Image Processing Metrics: A Picture Story
Annika Reinke
M. Tizabi
Carole H. Sudre
Matthias Eisenmann
Tim Radsch
...
Gaël Varoquaux
Manuel Wiesenfarth
Ziv R. Yaniv
Paul Jäger
Lena Maier-Hein
58
145
0
12 Apr 2021
HAD-Net: A Hierarchical Adversarial Knowledge Distillation Network for
  Improved Enhanced Tumour Segmentation Without Post-Contrast Images
HAD-Net: A Hierarchical Adversarial Knowledge Distillation Network for Improved Enhanced Tumour Segmentation Without Post-Contrast Images
Saverio Vadacchino
Raghav Mehta
N. Sepahvand
Brennan Nichyporuk
James J. Clark
Tal Arbel
MedIm
44
14
0
30 Mar 2021
MRI brain tumor segmentation and uncertainty estimation using 3D-UNet
  architectures
MRI brain tumor segmentation and uncertainty estimation using 3D-UNet architectures
Laura Mora Ballestar
Verónica Vilaplana
41
36
0
30 Dec 2020
Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D
  networks with label uncertainty
Uncertainty-driven refinement of tumor-core segmentation using 3D-to-2D networks with label uncertainty
Richard McKinley
M. Rebsamen
Katrin Daetwyler
Raphael Meier
Piotr Radojewski
Roland Wiest
3DV
38
27
0
11 Dec 2020
Multi-Decoder Networks with Multi-Denoising Inputs for Tumor
  Segmentation
Multi-Decoder Networks with Multi-Denoising Inputs for Tumor Segmentation
Minh H. Vu
T. Nyholm
Tommy Löfstedt
MedIm
36
18
0
16 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
276
1,911
0
12 Nov 2020
Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge
Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge
Yue Sun
Kun Gao
Zhengwang Wu
Zhihao Lei
Ying Wei
...
Weili Lin
V. Jewells
Gang Li
Dinggang Shen
Liwen Wang
53
70
0
04 Jul 2020
Stochastic Segmentation Networks: Modelling Spatially Correlated
  Aleatoric Uncertainty
Stochastic Segmentation Networks: Modelling Spatially Correlated Aleatoric Uncertainty
Miguel A. B. Monteiro
Loic Le Folgoc
Daniel Coelho De Castro
Nick Pawlowski
Bernardo Marques
Konstantinos Kamnitsas
Mark van der Wilk
Ben Glocker
UQCV
BDL
45
114
0
10 Jun 2020
Uncertainty Evaluation Metric for Brain Tumour Segmentation
Uncertainty Evaluation Metric for Brain Tumour Segmentation
Raghav Mehta
Angelos Filos
Y. Gal
Tal Arbel
UQCV
56
16
0
28 May 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
156
491
0
17 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
77
319
0
15 Feb 2020
Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIs
Robust Semantic Segmentation of Brain Tumor Regions from 3D MRIs
Andriy Myronenko
Ali Hatamizadeh
74
47
0
06 Jan 2020
The state of the art in kidney and kidney tumor segmentation in
  contrast-enhanced CT imaging: Results of the KiTS19 Challenge
The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 Challenge
N. Heller
Fabian Isensee
Klaus H. Maier-Hein
X. Hou
Chunmei Xie
...
S. Peterson
A. Kalapara
N. Sathianathen
Nikolaos Papanikolopoulos
C. Weight
57
487
0
02 Dec 2019
Multi-Resolution 3D CNN for MRI Brain Tumor Segmentation and Survival
  Prediction
Multi-Resolution 3D CNN for MRI Brain Tumor Segmentation and Survival Prediction
Mehdi Amian
Mohammadreza Soltaninejad
50
33
0
19 Nov 2019
DR$\vert$GRADUATE: uncertainty-aware deep learning-based diabetic
  retinopathy grading in eye fundus images
DR∣\vert∣GRADUATE: uncertainty-aware deep learning-based diabetic retinopathy grading in eye fundus images
Teresa Araújo
Guilherme Aresta
Luís Mendonça
S. Penas
Carolina Maia
Â. Carneiro
A. Mendonça
A. Campilho
MedIm
361
111
0
25 Oct 2019
TuNet: End-to-end Hierarchical Brain Tumor Segmentation using Cascaded
  Networks
TuNet: End-to-end Hierarchical Brain Tumor Segmentation using Cascaded Networks
Minh H. Vu
T. Nyholm
Tommy Löfstedt
44
32
0
11 Oct 2019
REFUGE Challenge: A Unified Framework for Evaluating Automated Methods
  for Glaucoma Assessment from Fundus Photographs
REFUGE Challenge: A Unified Framework for Evaluating Automated Methods for Glaucoma Assessment from Fundus Photographs
J. Orlando
Huazhu Fu
J. Barbosa-Breda
K. V. Keer
Deepti R. Bathula
...
Fei Li
Xiulan Zhang
Yanwu Xu
Xiulan Zhang
Hrvoje Bogunović
104
610
0
08 Oct 2019
DeepMRSeg: A convolutional deep neural network for anatomy and
  abnormality segmentation on MR images
DeepMRSeg: A convolutional deep neural network for anatomy and abnormality segmentation on MR images
J. Doshi
G. Erus
Mohamad Habes
Christos Davatzikos
MedIm
32
27
0
03 Jul 2019
Quantifying and Leveraging Classification Uncertainty for Chest
  Radiograph Assessment
Quantifying and Leveraging Classification Uncertainty for Chest Radiograph Assessment
Florin-Cristian Ghesu
Bogdan Georgescu
Eli Gibson
Sebastian Gündel
Mannudeep K. Kalra
Ramandeep Singh
S. Digumarthy
Sasa Grbic
Dorin Comaniciu
UQCV
28
46
0
18 Jun 2019
PHiSeg: Capturing Uncertainty in Medical Image Segmentation
PHiSeg: Capturing Uncertainty in Medical Image Segmentation
Christian F. Baumgartner
K. Tezcan
K. Chaitanya
A. Hötker
Urs J. Muehlematter
K. Schawkat
Anton S. Becker
O. Donati
E. Konukoglu
UQCV
51
203
0
07 Jun 2019
The Probabilistic Object Detection Challenge
The Probabilistic Object Detection Challenge
John Skinner
David Hall
Haoyang Zhang
Feras Dayoub
Niko Sünderhauf
AAML
25
9
0
19 Mar 2019
A large annotated medical image dataset for the development and
  evaluation of segmentation algorithms
A large annotated medical image dataset for the development and evaluation of segmentation algorithms
Amber L. Simpson
Michela Antonelli
Spyridon Bakas
Michel Bilello
Keyvan Farahani
...
M. McHugo
S. Napel
Eugene Vorontsov
Lena Maier-Hein
M. Jorge Cardoso
108
859
0
25 Feb 2019
Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted
  by the International Skin Imaging Collaboration (ISIC)
Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC)
Noel Codella
V. Rotemberg
P. Tschandl
M. E. Celebi
Stephen W. Dusza
...
Aadi Kalloo
Konstantinos Liopyris
Michael Marchetti
Harald Kittler
Allan Halpern
99
1,184
0
09 Feb 2019
Evaluating Bayesian Deep Learning Methods for Semantic Segmentation
Evaluating Bayesian Deep Learning Methods for Semantic Segmentation
Jishnu Mukhoti
Y. Gal
UQCV
BDL
68
222
0
30 Nov 2018
Probabilistic Object Detection: Definition and Evaluation
Probabilistic Object Detection: Definition and Evaluation
David Hall
Feras Dayoub
John Skinner
Haoyang Zhang
Dimity Miller
Peter Corke
G. Carneiro
A. Angelova
Niko Sünderhauf
UQCV
78
110
0
27 Nov 2018
Identifying the Best Machine Learning Algorithms for Brain Tumor
  Segmentation, Progression Assessment, and Overall Survival Prediction in the
  BRATS Challenge
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Spyridon Bakas
M. Reyes
Andras Jakab
Stefan Bauer
Markus Rempfler
...
Jayashree Kalpathy-Cramer
Keyvan Farahani
Christos Davatzikos
Koen van Leemput
Bjoern Menze
130
1,631
0
05 Nov 2018
No New-Net
No New-Net
Fabian Isensee
Philipp Kickingereder
Wolfgang Wick
Martin Bendszus
Klaus H. Maier-Hein
SSeg
85
400
0
27 Sep 2018
Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis
  Lesion Detection and Segmentation
Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation
T. Nair
Doina Precup
Douglas L. Arnold
Tal Arbel
UQCV
58
445
0
03 Aug 2018
Big-Little Net: An Efficient Multi-Scale Feature Representation for
  Visual and Speech Recognition
Big-Little Net: An Efficient Multi-Scale Feature Representation for Visual and Speech Recognition
Chun-Fu Chen
Quanfu Fan
Neil Rohit Mallinar
Tom Sercu
Rogerio Feris
37
96
0
10 Jul 2018
Confounding variables can degrade generalization performance of
  radiological deep learning models
Confounding variables can degrade generalization performance of radiological deep learning models
J. Zech
Marcus A. Badgeley
Manway Liu
A. Costa
J. Titano
Eric K. Oermann
OOD
83
1,173
0
02 Jul 2018
A Probabilistic U-Net for Segmentation of Ambiguous Images
A Probabilistic U-Net for Segmentation of Ambiguous Images
Simon A. A. Kohl
Bernardino Romera-Paredes
Clemens Meyer
J. Fauw
J. Ledsam
Klaus H. Maier-Hein
S. M. Ali Eslami
Danilo Jimenez Rezende
Olaf Ronneberger
UQCV
SSeg
76
572
0
13 Jun 2018
Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration
Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration
Adrian Dalca
Guha Balakrishnan
John Guttag
M. Sabuncu
DiffM
73
382
0
11 May 2018
Understanding Measures of Uncertainty for Adversarial Example Detection
Understanding Measures of Uncertainty for Adversarial Example Detection
Lewis Smith
Y. Gal
UQCV
86
363
0
22 Mar 2018
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
401
26,465
0
05 Sep 2017
On Calibration of Modern Neural Networks
On Calibration of Modern Neural Networks
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
UQCV
287
5,825
0
14 Jun 2017
What Uncertainties Do We Need in Bayesian Deep Learning for Computer
  Vision?
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Alex Kendall
Y. Gal
BDL
OOD
UD
UQCV
PER
346
4,700
0
15 Mar 2017
Deep Bayesian Active Learning with Image Data
Deep Bayesian Active Learning with Image Data
Y. Gal
Riashat Islam
Zoubin Ghahramani
BDL
UQCV
68
1,732
0
08 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
774
5,806
0
05 Dec 2016
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
Laurens van der Maaten
Kilian Q. Weinberger
PINN
3DV
731
36,781
0
25 Aug 2016
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
Özgün Çiçek
Ahmed Abdulkadir
S. Lienkamp
Thomas Brox
Olaf Ronneberger
3DV
3DPC
SSeg
3DH
148
6,523
0
21 Jun 2016
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image
  Segmentation
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
Fausto Milletari
Nassir Navab
Seyed-Ahmad Ahmadi
204
8,675
0
15 Jun 2016
Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain
  Lesion Segmentation
Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation
Konstantinos Kamnitsas
C. Ledig
Virginia Newcombe
Joanna P. Simpson
A. D. Kane
David Menon
Daniel Rueckert
Ben Glocker
MedIm
3DV
130
3,056
0
18 Mar 2016
Variational Inference: A Review for Statisticians
Variational Inference: A Review for Statisticians
David M. Blei
A. Kucukelbir
Jon D. McAuliffe
BDL
250
4,787
0
04 Jan 2016
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder
  Architectures for Scene Understanding
Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
Alex Kendall
Vijay Badrinarayanan
R. Cipolla
UQCV
BDL
83
1,064
0
09 Nov 2015
12
Next