Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2112.09992
Cited By
Weisfeiler and Leman go Machine Learning: The Story so far
18 December 2021
Christopher Morris
Y. Lipman
Haggai Maron
Bastian Alexander Rieck
Nils M. Kriege
Martin Grohe
Matthias Fey
Karsten M. Borgwardt
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Weisfeiler and Leman go Machine Learning: The Story so far"
32 / 32 papers shown
Title
A Survey of Graph Transformers: Architectures, Theories and Applications
Chaohao Yuan
Kangfei Zhao
Ercan Engin Kuruoglu
Liang Wang
Tingyang Xu
Wenbing Huang
Deli Zhao
Hong Cheng
Yu Rong
55
4
0
23 Feb 2025
Towards Graph Foundation Models: A Study on the Generalization of Positional and Structural Encodings
Billy Joe Franks
Moshe Eliasof
Semih Cantürk
Guy Wolf
Carola-Bibiane Schönlieb
Sophie Fellenz
Marius Kloft
AI4CE
76
0
0
10 Dec 2024
Improving Expressivity of Graph Neural Networks using Localization
Anant Kumar
Shrutimoy Das
Shubhajit Roy
Binita Maity
Anirban Dasgupta
33
0
0
31 May 2023
A new perspective on building efficient and expressive 3D equivariant graph neural networks
Weitao Du
Yuanqi Du
Limei Wang
Dieqiao Feng
Guifeng Wang
Shuiwang Ji
Carla P. Gomes
Zhixin Ma
AI4CE
27
33
0
07 Apr 2023
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof
Fabrizio Frasca
Beatrice Bevilacqua
Eran Treister
Gal Chechik
Haggai Maron
22
18
0
06 Mar 2023
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
24
31
0
22 Feb 2023
On the Expressivity of Persistent Homology in Graph Learning
Bastian Alexander Rieck
Bastian Rieck
14
13
0
20 Feb 2023
Equivariant Architectures for Learning in Deep Weight Spaces
Aviv Navon
Aviv Shamsian
Idan Achituve
Ethan Fetaya
Gal Chechik
Haggai Maron
36
63
0
30 Jan 2023
GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph Generation
Han Huang
Leilei Sun
Bowen Du
Yanjie Fu
Weifeng Lv
DiffM
29
42
0
04 Dec 2022
On the Ability of Graph Neural Networks to Model Interactions Between Vertices
Noam Razin
Tom Verbin
Nadav Cohen
23
10
0
29 Nov 2022
Beyond 1-WL with Local Ego-Network Encodings
Nurudin Alvarez-Gonzalez
Andreas Kaltenbrunner
Vicencc Gómez
33
5
0
27 Nov 2022
Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Anders Aamand
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Nicholas Schiefer
Sandeep Silwal
Tal Wagner
39
21
0
06 Nov 2022
From Local to Global: Spectral-Inspired Graph Neural Networks
Ningyuan Huang
Soledad Villar
Carey E. Priebe
Da Zheng
Cheng-Fu Huang
Lin F. Yang
Vladimir Braverman
23
14
0
24 Sep 2022
Gradual Weisfeiler-Leman: Slow and Steady Wins the Race
Franka Bause
Nils M. Kriege
CLL
26
6
0
19 Sep 2022
Universally Expressive Communication in Multi-Agent Reinforcement Learning
Matthew Morris
Thomas D. Barrett
Arnu Pretorius
24
4
0
14 Jun 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
73
37
0
30 May 2022
Low Dimensional Invariant Embeddings for Universal Geometric Learning
Nadav Dym
S. Gortler
21
39
0
05 May 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
47
40
0
25 Mar 2022
A Simple and Universal Rotation Equivariant Point-cloud Network
Ben Finkelshtein
Chaim Baskin
Haggai Maron
Nadav Dym
3DPC
27
13
0
02 Mar 2022
Sign and Basis Invariant Networks for Spectral Graph Representation Learning
Derek Lim
Joshua Robinson
Lingxiao Zhao
Tess E. Smidt
S. Sra
Haggai Maron
Stefanie Jegelka
49
141
0
25 Feb 2022
A Theoretical Comparison of Graph Neural Network Extensions
Pál András Papp
Roger Wattenhofer
97
45
0
30 Jan 2022
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
130
78
0
01 Oct 2021
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
M. Bronstein
Joan Bruna
Taco S. Cohen
Petar Velivcković
GNN
174
1,104
0
27 Apr 2021
Learning with invariances in random features and kernel models
Song Mei
Theodor Misiakiewicz
Andrea Montanari
OOD
46
89
0
25 Feb 2021
Walking Out of the Weisfeiler Leman Hierarchy: Graph Learning Beyond Message Passing
Jan Toenshoff
Martin Ritzert
Hinrikus Wolf
Martin Grohe
GNN
78
28
0
17 Feb 2021
The expressive power of kth-order invariant graph networks
Floris Geerts
126
37
0
23 Jul 2020
Graph Homomorphism Convolution
Hoang NT
Takanori Maehara
95
40
0
03 May 2020
Universal Equivariant Multilayer Perceptrons
Siamak Ravanbakhsh
98
48
0
07 Feb 2020
Convolutional Neural Network Architectures for Signals Supported on Graphs
Fernando Gama
A. Marques
G. Leus
Alejandro Ribeiro
132
285
0
01 May 2018
MoleculeNet: A Benchmark for Molecular Machine Learning
Zhenqin Wu
Bharath Ramsundar
Evan N. Feinberg
Joseph Gomes
C. Geniesse
Aneesh S. Pappu
K. Leswing
Vijay S. Pande
OOD
172
1,775
0
02 Mar 2017
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
C. Qi
Hao Su
Kaichun Mo
Leonidas J. Guibas
3DH
3DPC
3DV
PINN
222
14,099
0
02 Dec 2016
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
1