ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2007.12035
126
37

The expressive power of kth-order invariant graph networks

23 July 2020
Floris Geerts
ArXivPDFHTML
Abstract

The expressive power of graph neural network formalisms is commonly measured by their ability to distinguish graphs. For many formalisms, the k-dimensional Weisfeiler-Leman (k-WL) graph isomorphism test is used as a yardstick. In this paper we consider the expressive power of kth-order invariant (linear) graph networks (k-IGNs). It is known that k-IGNs are expressive enough to simulate k-WL. This means that for any two graphs that can be distinguished by k-WL, one can find a k-IGN which also distinguishes those graphs. The question remains whether k-IGNs can distinguish more graphs than k-WL. This was recently shown to be false for k=2. Here, we generalise this result to arbitrary k. In other words, we show that k-IGNs are bounded in expressive power by k-WL. This implies that k-IGNs and k-WL are equally powerful in distinguishing graphs.

View on arXiv
Comments on this paper