ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.09899
  4. Cited By
Improving Subgraph Recognition with Variational Graph Information
  Bottleneck

Improving Subgraph Recognition with Variational Graph Information Bottleneck

18 December 2021
Junchi Yu
Jie Cao
Ran He
ArXivPDFHTML

Papers citing "Improving Subgraph Recognition with Variational Graph Information Bottleneck"

39 / 39 papers shown
Title
Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers
Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers
Xuexin Chen
Ruichu Cai
Zhengting Huang
Zijian Li
Jie Zheng
Min Wu
77
0
0
08 Mar 2025
Drop-Bottleneck: Learning Discrete Compressed Representation for
  Noise-Robust Exploration
Drop-Bottleneck: Learning Discrete Compressed Representation for Noise-Robust Exploration
Jaekyeom Kim
Minjung Kim
Dongyeon Woo
Gunhee Kim
53
17
0
23 Mar 2021
Recognizing Predictive Substructures with Subgraph Information
  Bottleneck
Recognizing Predictive Substructures with Subgraph Information Bottleneck
Junchi Yu
Tingyang Xu
Yu Rong
Yatao Bian
Junzhou Huang
Ran He
38
44
0
20 Mar 2021
On Explainability of Graph Neural Networks via Subgraph Explorations
On Explainability of Graph Neural Networks via Subgraph Explorations
Hao Yuan
Haiyang Yu
Jie Wang
Kang Li
Shuiwang Ji
FAtt
62
383
0
09 Feb 2021
Parameterized Explainer for Graph Neural Network
Parameterized Explainer for Graph Neural Network
Dongsheng Luo
Wei Cheng
Dongkuan Xu
Wenchao Yu
Bo Zong
Haifeng Chen
Xiang Zhang
120
546
0
09 Nov 2020
Graph Information Bottleneck
Graph Information Bottleneck
Tailin Wu
Hongyu Ren
Pan Li
J. Leskovec
AAML
130
231
0
24 Oct 2020
Graph Information Bottleneck for Subgraph Recognition
Graph Information Bottleneck for Subgraph Recognition
Junchi Yu
Tingyang Xu
Yu Rong
Yatao Bian
Junzhou Huang
Ran He
38
155
0
12 Oct 2020
Graph Cross Networks with Vertex Infomax Pooling
Graph Cross Networks with Vertex Infomax Pooling
Maosen Li
Siheng Chen
Ya Zhang
Ivor W. Tsang
85
59
0
05 Oct 2020
Interpreting Graph Neural Networks for NLP With Differentiable Edge
  Masking
Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking
Michael Schlichtkrull
Nicola De Cao
Ivan Titov
AI4CE
55
217
0
01 Oct 2020
Subgraph Neural Networks
Subgraph Neural Networks
Emily Alsentzer
S. G. Finlayson
Michelle M. Li
Marinka Zitnik
GNN
105
135
0
18 Jun 2020
What Makes for Good Views for Contrastive Learning?
What Makes for Good Views for Contrastive Learning?
Yonglong Tian
Chen Sun
Ben Poole
Dilip Krishnan
Cordelia Schmid
Phillip Isola
SSL
75
1,313
0
20 May 2020
Unsupervised Speech Decomposition via Triple Information Bottleneck
Unsupervised Speech Decomposition via Triple Information Bottleneck
Kaizhi Qian
Yang Zhang
Shiyu Chang
David D. Cox
M. Hasegawa-Johnson
53
178
0
23 Apr 2020
Restricting the Flow: Information Bottlenecks for Attribution
Restricting the Flow: Information Bottlenecks for Attribution
Karl Schulz
Leon Sixt
Federico Tombari
Tim Landgraf
FAtt
26
183
0
02 Jan 2020
ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph
  Representations
ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations
Ekagra Ranjan
Soumya Sanyal
Partha P. Talukdar
GNN
108
330
0
18 Nov 2019
Generalization in Reinforcement Learning with Selective Noise Injection
  and Information Bottleneck
Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck
Maximilian Igl
K. Ciosek
Yingzhen Li
Sebastian Tschiatschek
Cheng Zhang
Sam Devlin
Katja Hofmann
OffRL
44
172
0
28 Oct 2019
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation
  Learning via Mutual Information Maximization
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization
Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
SSL
138
852
0
31 Jul 2019
DropEdge: Towards Deep Graph Convolutional Networks on Node
  Classification
DropEdge: Towards Deep Graph Convolutional Networks on Node Classification
Yu Rong
Wenbing Huang
Tingyang Xu
Junzhou Huang
72
1,323
0
25 Jul 2019
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective
Semi-Supervised Graph Classification: A Hierarchical Graph Perspective
Jia Li
Yu Rong
Hong Cheng
Helen Meng
Wen-bing Huang
Junzhou Huang
32
149
0
10 Apr 2019
DeepGCNs: Can GCNs Go as Deep as CNNs?
DeepGCNs: Can GCNs Go as Deep as CNNs?
Ge Li
Matthias Muller
Ali K. Thabet
Guohao Li
3DPC
GNN
110
1,333
0
07 Apr 2019
Significance-aware Information Bottleneck for Domain Adaptive Semantic
  Segmentation
Significance-aware Information Bottleneck for Domain Adaptive Semantic Segmentation
Yawei Luo
Ping Liu
T. Guan
Junqing Yu
Yi Yang
45
184
0
01 Apr 2019
GNNExplainer: Generating Explanations for Graph Neural Networks
GNNExplainer: Generating Explanations for Graph Neural Networks
Rex Ying
Dylan Bourgeois
Jiaxuan You
Marinka Zitnik
J. Leskovec
LLMAG
111
1,300
0
10 Mar 2019
InfoBot: Transfer and Exploration via the Information Bottleneck
InfoBot: Transfer and Exploration via the Information Bottleneck
Anirudh Goyal
Riashat Islam
Daniel Strouse
Zafarali Ahmed
M. Botvinick
Hugo Larochelle
Yoshua Bengio
Sergey Levine
OffRL
43
166
0
30 Jan 2019
How Powerful are Graph Neural Networks?
How Powerful are Graph Neural Networks?
Keyulu Xu
Weihua Hu
J. Leskovec
Stefanie Jegelka
GNN
173
7,554
0
01 Oct 2018
Variational Discriminator Bottleneck: Improving Imitation Learning,
  Inverse RL, and GANs by Constraining Information Flow
Variational Discriminator Bottleneck: Improving Imitation Learning, Inverse RL, and GANs by Constraining Information Flow
Xue Bin Peng
Angjoo Kanazawa
Sam Toyer
Pieter Abbeel
Sergey Levine
56
214
0
01 Oct 2018
Adaptive Sampling Towards Fast Graph Representation Learning
Adaptive Sampling Towards Fast Graph Representation Learning
Wen-bing Huang
Tong Zhang
Yu Rong
Junzhou Huang
GNN
66
490
0
14 Sep 2018
Hierarchical Graph Representation Learning with Differentiable Pooling
Hierarchical Graph Representation Learning with Differentiable Pooling
Rex Ying
Jiaxuan You
Christopher Morris
Xiang Ren
William L. Hamilton
J. Leskovec
GNN
223
2,135
0
22 Jun 2018
Junction Tree Variational Autoencoder for Molecular Graph Generation
Junction Tree Variational Autoencoder for Molecular Graph Generation
Wengong Jin
Regina Barzilay
Tommi Jaakkola
291
1,358
0
12 Feb 2018
FastGCN: Fast Learning with Graph Convolutional Networks via Importance
  Sampling
FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling
Jie Chen
Tengfei Ma
Cao Xiao
GNN
120
1,514
0
30 Jan 2018
MINE: Mutual Information Neural Estimation
MINE: Mutual Information Neural Estimation
Mohamed Ishmael Belghazi
A. Baratin
Sai Rajeswar
Sherjil Ozair
Yoshua Bengio
Aaron Courville
R. Devon Hjelm
DRL
143
1,264
0
12 Jan 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
319
19,991
0
30 Oct 2017
Inductive Representation Learning on Large Graphs
Inductive Representation Learning on Large Graphs
William L. Hamilton
Z. Ying
J. Leskovec
403
15,066
0
07 Jun 2017
Concrete Dropout
Concrete Dropout
Y. Gal
Jiri Hron
Alex Kendall
BDL
UQCV
129
587
0
22 May 2017
Neural Message Passing for Quantum Chemistry
Neural Message Passing for Quantum Chemistry
Justin Gilmer
S. Schoenholz
Patrick F. Riley
Oriol Vinyals
George E. Dahl
295
7,388
0
04 Apr 2017
Axiomatic Attribution for Deep Networks
Axiomatic Attribution for Deep Networks
Mukund Sundararajan
Ankur Taly
Qiqi Yan
OOD
FAtt
120
5,920
0
04 Mar 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
83
1,697
0
01 Dec 2016
Information Dropout: Learning Optimal Representations Through Noisy
  Computation
Information Dropout: Learning Optimal Representations Through Noisy Computation
Alessandro Achille
Stefano Soatto
OOD
DRL
SSL
42
397
0
04 Nov 2016
Categorical Reparameterization with Gumbel-Softmax
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
221
5,323
0
03 Nov 2016
Semi-Supervised Classification with Graph Convolutional Networks
Semi-Supervised Classification with Graph Convolutional Networks
Thomas Kipf
Max Welling
GNN
SSL
447
28,901
0
09 Sep 2016
Fast and Accurate Modeling of Molecular Atomization Energies with
  Machine Learning
Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
M. Rupp
A. Tkatchenko
K. Müller
O. A. von Lilienfeld
AI4CE
120
1,581
0
12 Sep 2011
1